Factsheet: Hyperbolic identities

Mathematics
Author

Tom Coleman

Summary
A list of hyperbolic trig identities.

These are common definitions and identities for hyperbolic functions. For derivatives and antiderivatives, please see Factsheet: List of derivatives and Factsheet: List of integrals respectively.

Definitions of hyperbolic functions

For all real numbers \(x\):

\[\begin{aligned} \cosh(x) &= \frac{e^x + e^{-x}}{2} \\[0.5em] \sinh(x) &= \frac{e^x - e^{-x}}{2} \\[0.5em] \tanh(x) &= \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \\[0.5em] \textrm{coth}(x) &= \frac{1}{\tanh(x)} = \frac{\cosh(x)}{\sinh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \\[0.5em] \textrm{sech}(x) &= \frac{1}{\cosh(x)} = \frac{2}{e^x + e^{-x}} \\[0.5em] \textrm{csch}(x) &= \frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}} \end{aligned}\]

Hyperbolic identities

Pythagorean formulas

For all real numbers \(x\):

\[\begin{aligned} \cosh^2(x) - \sinh^2(x) &= 1 \\[0.5em] 1 - \tanh^2(x) &= \textrm{sech}^2(x) \\[0.5em] \coth^2(x) - 1 &= \textrm{csch}^2(x) \end{aligned}\]

Sum and difference formulas

For all real numbers \(x,y\):

\[\begin{aligned} \cosh(x + y) &= \cosh(x)\cosh(y) + \sinh(x)\sinh(y) \\[0.5em] \cosh(x - y) &= \cosh(x)\cosh(y) - \sinh(x)\sinh(y) \\[0.5em] \sinh(x + y) &= \sinh(x)\cosh(y) + \cosh(x)\sinh(y) \\[0.5em] \sinh(x - y) &= \sinh(x)\cosh(y) - \cosh(x)\sinh(y) \\[0.5em] \tanh(x + y) &= \frac{\tanh(x) + \tanh(y)}{1 + \tanh(x)\tanh(y)}\\[0.5em] \tanh(x - y) &= \frac{\tanh(x) - \tanh(y)}{1 - \tanh(x)\tanh(y)} \end{aligned}\]

Double angle formulas

For all real numbers \(x\):

\[\begin{aligned} \cosh(2x) &= \cosh^2(x) + \sinh^2(x) \\[0.5em] \sinh(2x) &= 2\sinh(x)\cosh(x) \\[0.5em] \tanh(2x) &= \frac{2\tanh(x)}{1 + \tanh^2(x)} \end{aligned}\]

Definitions of inverse hyperbolic functions

function logarithmic definition validity
\(\sinh^{-1}(x)\) \(\ln\left(x + \sqrt{x^2 + 1}\right)\)
\(\cosh^{-1}(x)\) \(\ln\left(x + \sqrt{x^2 - 1}\right)\) \(x\geq 1\)
\(\tanh^{-1}(x)\) \(\dfrac{1}{2}\ln\left(\dfrac{1+x}{1-x}\right)\) \(|x| < 1\)
\(\textrm{coth}^{-1}(x)\) \(\dfrac{1}{2}\ln\left(\dfrac{x+1}{x-1}\right)\) \(|x| > 1\)
\(\textrm{sech}^{-1}(x)\) \(\ln\left(\dfrac{1}{x} + \sqrt{\dfrac{1}{x^2}-1}\right)\) \(0< x \leq 1\)
\(\textrm{csch}^{-1}(x)\) \(\ln\left(\dfrac{1}{x} + \sqrt{\dfrac{1}{x^2} +1}\right)\) \(x\neq 0\)


Version history

v1.0: created in 08/25 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).