Factsheet: List of derivatives

Mathematics
Author

Tom Coleman

Summary
A list of common (and some uncommon) derivatives of functions.

Throughout, \(a,k\) are real numbers.

Derivatives of polynomial, exponential and logarithmic functions

function derivative w.r.t \(x\) notes
\(c\) \(0\) \(c\in\mathbb{R}\)
\(mx + c\) \(m\) \(m,c\in\mathbb{R}\)
\(x^\alpha\) \(\alpha x^{\alpha-1}\) \(\alpha \in\mathbb{R}, \alpha \neq 0\)
\(ae^{kx}\) \(ake^{kx}\)
\(a\ln(kx)\) \(\dfrac{a}{x}\)
\(ac^{kx}\) \(akc^{kx}\ln(b)\) \(c \in\mathbb{R}, c > 0\) constant
\(a\log_c(kx)\) \(\dfrac{a}{x\ln(c)}\) \(c \in\mathbb{R}, c > 1\) constant

Derivatives of trigonometric functions

function derivative w.r.t \(x\)
\(a\sin(kx)\) \(ak\cos(kx)\)
\(a\cos(kx)\) \(-ak\sin(kx)\)
\(a\tan(kx)\) \(ak\sec^2(kx)\)
\(a\cot(kx)\) \(-ak\csc^2(kx)\)
\(a\sec(kx)\) \(ak\sec(kx)\tan(kx)\)
\(a\csc(kx)\) \(-ak\csc(kx)\cot(kx)\)

Derivatives of inverse trigonometric functions

function derivative w.r.t \(x\) notes
\(a\sin^{-1}(kx)\) \(\displaystyle\frac{ak}{\sqrt{1-k^2x^2}}\) valid for \(x\in\left(-\frac{1}{k},\frac{1}{k}\right)\)
\(a\cos^{-1}(kx)\) \(\displaystyle\frac{-ak}{\sqrt{1-k^2x^2}}\) valid for \(x\in\left(-\frac{1}{k},\frac{1}{k}\right)\)
\(a\tan^{-1}(kx)\) \(\displaystyle\frac{ak}{1+k^2x^2}\) valid for \(x\in\mathbb{R}\)
\(a\cot^{-1}(kx)\) \(\displaystyle\frac{-ak}{1+k^2x^2}\) valid for \(x\in\mathbb{R}\)
\(a\sec^{-1}(kx)\) \(\displaystyle\frac{a}{|x|\sqrt{k^2x^2 - 1}}\) valid for \(x\in\mathbb{R}\smallsetminus\left(-\frac{1}{k},\frac{1}{k}\right)\)
\(a\csc^{-1}(kx)\) \(\displaystyle\frac{-a}{|x|\sqrt{k^2x^2 - 1}}\) valid for \(x\in\mathbb{R}\smallsetminus\left(-\frac{1}{k},\frac{1}{k}\right)\)

Derivatives of hyperbolic functions

function derivative w.r.t \(x\)
\(a\sinh(kx)\) \(ak\cosh(kx)\)
\(a\cosh(kx)\) \(ak\sinh(kx)\)
\(a\tanh(kx)\) \(ak\,\textrm{sech}^2(kx)\)
\(a\,\textrm{coth}(kx)\) \(-ak\,\textrm{csch}^2(kx)\)
\(a\,\textrm{sech}(kx)\) \(-ak\,\textrm{sech}(kx)\,\textrm{tanh}(kx)\)
\(a\,\textrm{csch}(kx)\) \(-ak\,\textrm{csch}(kx)\,\textrm{coth}(kx)\)

Derivatives of inverse hyperbolic functions

Throughout, \(a,k\) are real numbers.

function derivative w.r.t \(x\) notes
\(a\sinh^{-1}(kx)\) \(\dfrac{ak}{\sqrt{1+k^2x^2}}\)
\(a\cosh^{-1}(kx)\) \(\dfrac{ak}{\sqrt{k^2x^2 - 1}}\) \(a,k,x\) positive
\(a\tanh^{-1}(kx)\) \(\dfrac{ak}{1-k^2x^2}\)
\(a\,\textrm{coth}^{-1}(kx)\) \(\dfrac{ak}{1-k^2x^2}\)
\(a\,\textrm{sech}^{-1}(kx)\) \(-\dfrac{ak}{x\sqrt{1-k^2x^2}}\) \(a,k,x\) positive
\(a\,\textrm{csch}^{-1}(kx)\) \(-\dfrac{ak}{|x|\sqrt{k^2x^2+1}}\)


Further reading

For more about where these came from, please see Guide: Introduction to differentiation and the derivative and [Proof sheet: Derivatives of other common functions].

Version history

v1.0: created in 08/25 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).