Questions: Multivariate chain rule

Author

Donald Campbell

Summary
A selection of questions for the study guide on the multivariate chain rule.

Before attempting these questions, it is highly recommended that you read Guide: Multivariate chain rule.

Q1

Let \(z=z(x,y)\) be a function where both \(x\) and \(y\) depend on an independent variable \(t\).

For each function given below, use the multivariate chain rule or otherwise to find \(\dfrac{\mathrm{d}z}{\mathrm{d}t}\), expressing your answer in terms of \(t\) only.

1.1. \(\quad \displaystyle z=x^2y\) where \(x=\sin(t)\) and \(y=e^{2t}\).

1.2. \(\quad \displaystyle z = \ln(xy)\) where \(x = t^3\) and \(y = \cos(t)\).

1.3. \(\quad \displaystyle z = x^3 + y^3\) where \(x = \sqrt{t}\) and \(y = t^2 + 1\).

1.4. \(\quad \displaystyle z = e^{xy}\) where \(x = t\) and \(y = \ln(t+1)\).

1.5. \(\quad \displaystyle z = x \tan(y)\) where \(x = \cos(t)\) and \(y = t^2\).

1.6. \(\quad \displaystyle z = x^2 + 3xy + y^3\) where \(x = 2t - 1\) and \(y = 5\sin(t)\).

1.7. \(\quad \displaystyle z = \dfrac{x}{y}\) where \(x = t^2 + 1\) and \(y = t - 2\).

1.8. \(\quad \displaystyle z = \sqrt{x^2 + y^2}\) where \(x = \cos(t)\) and \(y = \sin(t)\).

1.9. \(\quad \displaystyle z = xy^2 + yx^2\) where \(x = e^t\) and \(y = t^3\).

1.10. \(\quad \displaystyle z = \ln(x) + xy\) where \(x = t^2\) and \(y = e^{-t}\).

1.11. \(\quad \displaystyle z = x^2y\) where \(x = 2t\) and \(y = \ln(t)\).

1.12. \(\quad \displaystyle z = x^2 \sin(y)\) where \(x = t^3 + 1\) and \(y = 3t\).

1.13. \(\quad \displaystyle z = \tan^{-1} \left( \dfrac{y}{x} \right)\) where \(x = t\) and \(y = t^2\).

1.14. \(\quad \displaystyle z = xe^y\) where \(x = \ln(t+2)\) and \(y = \sqrt{t}\).

Q2

Let \(z=z(x,y)\) be a function where both \(x\) and \(y\) depend on two independent variables \(s\) and \(t\).

For each function, use the multivariate chain rule to find \(\dfrac{\partial z}{\partial s}\) and \(\dfrac{\partial z}{\partial t}\), expressing your answers in terms of \(s\) and \(t\) only.

2.1. \(\quad \displaystyle z = x^2y\) where \(x=s+t\) and \(y=s^2-t^2\).

2.2. \(\quad \displaystyle z = \ln(x+y)\) where \(x=e^s \cos(t)\) and \(y=e^s \sin(t)\).

2.3. \(\quad \displaystyle z = x^3-3xy\) where \(x=st\) and \(y=s+t\).

2.4. \(\quad \displaystyle z = e^{x+y}\) where \(x=s^2\) and \(y=\ln(t)\).

2.5. \(\quad \displaystyle z = x\sin(y)\) where \(x=s-t^2\) and \(y=st\).

2.6. \(\quad \displaystyle z = x^2 + y^2\) where \(x=\cos(s)\sin(t)\) and \(y=\sin(s)\cos(t)\).

2.7. \(\quad \displaystyle z = xy+x^2\) where \(x=s+t\) and \(y=s-t\).

2.8. \(\quad \displaystyle z = \ln(x) - \ln(y)\) where \(x=s+t\) and \(y=st\).

2.9. \(\quad \displaystyle z = \tan(x+y)\) where \(x=s^2-t\) and \(y=s+t^2\).

2.10. \(\quad \displaystyle z = \tan^{-1} \left( \dfrac{y}{x} \right)\) where \(x=s^2-t^2\) and \(y=2st\).

Q3

Let \(w = w(x_1, \ldots, x_n)\) be a function that depends on variables \(x_1, \ldots, x_n\), where each \(x_i\) is itself a function of \(t_1, \ldots, t_m\).

For each function, write the appropriate form of the multivariate chain rule and find the resulting partial derivatives.

3.1. \(\quad \displaystyle w=x^2+y^2+z^2\) where \(\begin{cases} x=s+t \\ y=s-t \\ z=st \end{cases}\)

3.2. \(\quad \displaystyle w=xy+z\) where \(\begin{cases} x=s+t+u \\ y=st \\ z=t+u \end{cases}\)

3.3. \(\quad \displaystyle w=\sin(xy)+\cos(z)\) where \(\begin{cases} x=s^2 \\ y=t^2 \\ z=s+t \end{cases}\)

3.4. \(\quad \displaystyle w=x^2+y^2\) where \(\begin{cases} x=s+t+u \\ y=s-t+u \end{cases}\)


After attempting the questions above, please click this link to find the answers.


Version history and licensing

v1.0: initial version created 05/25 by Donald Campbell as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).