Questions: Introduction to integration

Author

Donald Campbell

Summary
A selection of questions for the study guide on introduction to integration.

Before attempting these questions, it is highly recommended that you read Guide: Introduction to integration.

Q1

Using the power rule and laws of indices (as appropriate), find the following indefinite integrals.

1.1. \(\displaystyle \quad \int x^4 \, \mathrm{d}x\)

1.2. \(\displaystyle \quad \int 2x \, \mathrm{d}x\)

1.3. \(\displaystyle \quad \int 7x^5 \, \mathrm{d}x\)

1.4. \(\displaystyle \quad \int -5 \, \mathrm{d}t\)

1.5. \(\displaystyle \quad \int \dfrac{3}{y^3} \, \mathrm{d}y\)

1.6. \(\displaystyle \quad \int 6x^{-4} \, \mathrm{d}x\)

1.7. \(\displaystyle \quad \int -\dfrac{2}{x^5} \, \mathrm{d}x\)

1.8. \(\displaystyle \quad \int \dfrac{8}{3x^6} \, \mathrm{d}x\)

1.9. \(\displaystyle \quad \int -\dfrac{7}{2z^7} \, \mathrm{d}z\)

1.10. \(\displaystyle \quad \int x^{1/3} \, \mathrm{d}x\)

1.11. \(\displaystyle \quad \int 3t^{-2/3} \, \mathrm{d}t\)

1.12. \(\displaystyle \quad \int \dfrac{4x^{1/4}}{3} \, \mathrm{d}x\)

1.13. \(\displaystyle \quad \int \dfrac{2}{5x^{1/3}} \, \mathrm{d}x\)

1.14. \(\displaystyle \quad \int \dfrac{5}{6y^{-4/3}} \, \mathrm{d}y\)

Q2

Find the following integrals.

2.1. \(\displaystyle \quad \int e^{2x} \, \mathrm{d}x\)

2.2. \(\displaystyle \quad \int -3e^{-3x} \, \mathrm{d}x\)

2.3. \(\displaystyle \quad \int 2e^{11x} \, \mathrm{d}x\)

2.4. \(\displaystyle \quad \int \frac{4}{x} \, \mathrm{d}x\)

2.5. \(\displaystyle \quad \int -\frac{5}{3x} \, \mathrm{d}x\)

2.6. \(\displaystyle \quad \int \cos (x) \, \mathrm{d}x\)

2.7. \(\displaystyle \quad \int \sin ( 2x ) \, \mathrm{d}x\)

2.8. \(\displaystyle \quad \int \dfrac{5}{6} \cos ( x ) \, \mathrm{d}x\)

2.9. \(\displaystyle \quad \int \cos ( 3x ) \, \mathrm{d}x\)

2.10. \(\displaystyle \quad \int \sin \left( \dfrac{x}{3} \right) \, \mathrm{d}x\)

Q3

Evaluate the following definite integrals with respect to \(x\).

3.1. \(\displaystyle \quad \int_{1}^{4} 2 \, \mathrm{d}x\)

3.2. \(\displaystyle \quad \int_{-2}^{2} 3x \, \mathrm{d}x\)

3.3. \(\displaystyle \quad \int_{2}^{4} 2x^3 \, \mathrm{d}x\)

3.4. \(\displaystyle \quad \int_{1}^{27} \dfrac{4}{\sqrt[3]{x}} \, \mathrm{d}x\)

3.5. \(\displaystyle \quad \int_{0}^{\ln(3)} 4e^x \, \mathrm{d}x\)

3.6. \(\displaystyle \quad \int_{0}^{5} e^{-3x} \, \mathrm{d}x\)

3.7. \(\displaystyle \quad \int_{1}^{2} -4e^{4x} \, \mathrm{d}x\)

3.8. \(\displaystyle \quad \int_{1}^{2} \frac{2}{x} \, \mathrm{d}x\)

3.9. \(\displaystyle \quad \int_{1}^{e^3} -\frac{4}{x} \, \mathrm{d}x\)

3.10. \(\displaystyle \quad \int_{e^3}^{e^9} \frac{9}{5x} \, \mathrm{d}x\)

3.11. \(\displaystyle \quad \int_{0}^{\pi/2} \sin ( x ) \, \mathrm{d}x\)

3.12. \(\displaystyle \quad \int_{0}^{\pi} \cos ( x ) \, \mathrm{d}x\)

3.13. \(\displaystyle \quad \int_{0}^{\pi/4} \sin ( 2x ) \, \mathrm{d}x\)

3.14. \(\displaystyle \quad \int_{0}^{\pi/6} \cos(2x) \, \mathrm{d}x\)

3.15. \(\displaystyle \quad \int_{-\pi/4}^{0} \sin(3x) \, \mathrm{d}x\)


After attempting the questions above, please click this link to find the answers.


Version history and licensing

v1.0: initial version created 05/25 by Donald Campbell as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).