Answers: Introduction to integration

Author

Donald Campbell

Summary
Answers to questions relating to the guide on introduction to integration.

These are the answers to Questions: Introduction to integration.

Please attempt the questions before reading these answers!

Q1

1.1. \(\displaystyle \quad \int x^4 \, \mathrm{d}x = \dfrac{1}{5}x^5 + C\).

1.2. \(\displaystyle \quad \int 2x \, \mathrm{d}x = x^2 + C\).

1.3. \(\displaystyle \quad \int 7x^5 \, \mathrm{d}x = \dfrac{7}{6}x^6 + C\).

1.4. \(\displaystyle \quad \int -5 \, \mathrm{d}t = -5t + C\).

1.5. \(\displaystyle \quad \int \dfrac{3}{y^3} \, \mathrm{d}y = -\dfrac{3}{2}y^{-2} + C\).

1.6. \(\displaystyle \quad \int 6x^{-4} \, \mathrm{d}x = -2x^{-3} + C\).

1.7. \(\displaystyle \quad \int -\dfrac{2}{x^5} \, \mathrm{d}x = \dfrac{1}{2}x^{-4} + C\).

1.8. \(\displaystyle \quad \int \dfrac{8}{3x^6} \, \mathrm{d}x = -\dfrac{8}{15}x^{-5} + C\).

1.9. \(\displaystyle \quad \int -\dfrac{7}{2z^7} \, \mathrm{d}z = \dfrac{7}{12}z^{-6} + C\).

1.10. \(\displaystyle \quad \int x^{1/3} \, \mathrm{d}x = \dfrac{3}{4} x^{4/3} + C\).

1.11. \(\displaystyle \quad \int 3t^{-2/3} \, \mathrm{d}t = 9t^{1/3} + C\).

1.12. \(\displaystyle \quad \int \dfrac{4x^{1/4}}{3} \, \mathrm{d}x = \dfrac{16}{15} x^{5/4} + C\).

1.13. \(\displaystyle \quad \int \dfrac{2}{5x^{1/3}} \, \mathrm{d}x = \dfrac{3}{5} x^{2/3} + C\).

1.14. \(\displaystyle \quad \int \dfrac{5}{6y^{-4/3}} \, \mathrm{d}y = \dfrac{5}{14} y^{7/3} + C\).

Q5

2.1. \(\displaystyle \quad \int e^{2x} \, \mathrm{d}x = \frac{1}{2}e^{2x} + C\)

2.2. \(\displaystyle \quad \int -3e^{-3x} \, \mathrm{d}x = e^{-3x} + C\)

2.3. \(\displaystyle \quad \int 2e^{11x} \, \mathrm{d}x = \frac{2}{11}e^{11x} + C\)

2.4. \(\displaystyle \quad \int \frac{4}{x} \, \mathrm{d}x = 4\ln|x| + C\)

2.5. \(\displaystyle \quad \int -\frac{5}{3x} \, \mathrm{d}x = -\frac{5}{3}\ln|x| + C\)

2.6. \(\displaystyle \quad \int \cos (x) \, \mathrm{d}x = \sin ( x ) + C\).

2.7. \(\displaystyle \quad \int \sin ( 2x ) \, \mathrm{d}x = -\dfrac{1}{2} \cos ( 2x ) + C\).

2.8. \(\displaystyle \quad \int \dfrac{5}{6} \cos ( x ) \, \mathrm{d}x = \dfrac{5}{6} \sin ( x ) + C\).

2.9. \(\displaystyle \quad \int \cos ( 3x ) \, \mathrm{d}x = \dfrac{1}{3} \sin ( 3x ) + C\).

2.10. \(\displaystyle \quad \int \sin \left( \dfrac{x}{3} \right) \, \mathrm{d}x = -3 \cos \left( \dfrac{x}{3} \right) + C\).

Q3

3.1. \(\displaystyle \quad \int_{1}^{4} 2 \, \mathrm{d}x = 6\)

3.2. \(\displaystyle \quad \int_{-2}^{2} 3x \, \mathrm{d}x = 0\)

3.3. \(\displaystyle \quad \int_{2}^{4} 2x^3 \, \mathrm{d}x = 120\)

3.4. \(\displaystyle \quad \int_{1}^{27} \dfrac{4}{\sqrt[3]{x}} \, \mathrm{d}x = 48\)

3.5. \(\displaystyle \quad \int_{0}^{\ln(3)} 4e^x \, \mathrm{d}x = 8\)

3.6. \(\displaystyle \quad \int_{0}^{5} e^{-3x} \, \mathrm{d}x = \frac{1}{3}\left(1 - e^{-15}\right)\)

3.7. \(\displaystyle \quad \int_{1}^{2} -4e^{4x} \, \mathrm{d}x = e^4(1-e^4)\)

3.8. \(\displaystyle \quad \int_{1}^{2} \frac{2}{x} \, \mathrm{d}x = 2\ln(2)\)

3.9. \(\displaystyle \quad \int_{1}^{e^3} -\frac{4}{x} \, \mathrm{d}x = -12\)

3.10. \(\displaystyle \quad \int_{e^3}^{e^9} \frac{9}{5x} \, \mathrm{d}x = \frac{54}{5}\)

3.11. \(\displaystyle \quad \int_{0}^{\pi/2} \sin ( x ) \, \mathrm{d}x = 1\)

3.12. \(\displaystyle \quad \int_{0}^{\pi} \cos ( x ) \, \mathrm{d}x = 0\)

3.13. \(\displaystyle \quad \int_{0}^{\pi/4} \sin ( 2x ) \, \mathrm{d}x = \dfrac{1}{2}\)

3.14. \(\displaystyle \quad \int_{0}^{\pi/6} \cos(2x) \, \mathrm{d}x = \dfrac{\sqrt{3}}{4}\)

3.15. \(\displaystyle \quad \int_{-\pi/4}^{0} \sin(3x) \, \mathrm{d}x = -\dfrac{1}{3} - \dfrac{1}{3\sqrt{2}}\)



Version history and licensing

v1.0: initial version created 05/25 by Donald Campbell as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).