Answers: Introduction to matrices

Author

Jessica Taberner

Summary
Answers to questions for the study guide on introduction to matrices.

These are the answers to Questions: Introduction to matrices.

Please attempt the questions before reading these answers!

Q1

1.1.

The matrix \(A\) has dimension \(2 \times 3\).

The matrix \(B\) has dimension \(2 \times 2\).

The matrix \(C\) has dimension \(3 \times 4\).

The matrix \(D\) has dimension \(3 \times 2\).

The matrix \(E\) has dimension \(3 \times 3\).

The matrix \(F\) has dimension \(3 \times 3\).

The matrix \(G\) has dimension \(5 \times 1\).

The matrix \(H\) has dimension \(4 \times 3\).

1.2.

  1. \(\quad [A]_{11} = 2\)

  2. \(\quad [G]_{41} = 8\)

  3. \(\quad [D]_{12} = -1\)

  4. \(\quad [F]_{32} = 0\)

  5. \(\quad [B]_{21} = 3\)

  6. \(\quad [A]_{12} = -1\)

  7. \(\quad [C]_{23} = 1\)

  8. \(\quad [E]_{23} = -4\)

  9. \(\quad [H]_{31} = x\)

  10. \(\quad [H]_{13} = 4\)

  11. \(\quad [E]_{32} = -6\)

  12. \(\quad [G]_{11} = -1\)

1.3.

\(\quad \textsf{diag}(A) = (2,4)\)

\(\quad \textsf{diag}(C) = (0, -\sqrt{2},-7)\)

\(\quad \textsf{diag}(E) = (1,3,7)\)

\(\quad \textsf{diag}(G) = (-1)\)

Q2

2.1. \(\quad X+Y = \begin{bmatrix} 2 \\ 5-\sqrt{5} \\ 8/3 \\ \pi - \sqrt{7} \end{bmatrix}\)

2.2. \(\quad Z-W = \begin{bmatrix} -1 +\sqrt{3} & -2 & -1/2 \\ -10 & 6 & -3 \\ 3 & 6 & 10 - \pi \end{bmatrix}\)

2.3. \(\quad N+M = \begin{bmatrix} -\pi + 1 & -5/4 & 2 & 6 \\ 5 & 1-\sqrt{5} & x + \sqrt{2} & 1 \end{bmatrix}\)

2.4. \(\quad O-P = \begin{bmatrix} 1 - \sqrt{3} & 2 \\ 3 - \pi & -1 \\ 1 & -6 \end{bmatrix}\)

2.5. \(\quad 3X = \begin{bmatrix} 9 \\ -3\sqrt{5} \\ 6 \\ 3\pi \end{bmatrix}\)

2.6. \(\quad -2Y = \begin{bmatrix} 2 \\-10 \\-4/3 \\2\sqrt{7} \end{bmatrix}\)

2.7. \(\quad xZ = \begin{bmatrix} x & -2x & 3x \\4x & x & -5x \\6x & -7x & \pi x \end{bmatrix}\)

2.8. \(\quad -4W =\begin{bmatrix} \sqrt{3} & -4 & 5/2 \\24 & -28 & 32 \\-36 & 4 & -40 \end{bmatrix}\)

2.9. \(\quad yM = \begin{bmatrix} y & -2y & 3y & 4y\\5y & -y & \sqrt{2}y & -6y\end{bmatrix}\)

2.10. \(\quad 7N =\begin{bmatrix} -7\pi & 21/4 & -7 & 14 \\0 & -7\sqrt{5} & 7x & 49 \end{bmatrix}\)

2.11. \(\quad (1/2)O = \begin{bmatrix} 1/2 & -1 \\3/2 & 2 \\-5/2 & 1/2 \end{bmatrix}\)

2.12. \(\quad -4P =\begin{bmatrix} -4\sqrt{3} & 16 \\-4\pi & -20 \\24 & 28 \end{bmatrix}\)

2.13. \(\quad 3X+Y =\begin{bmatrix} 8 \\ 5 -3\sqrt{5} \\ 20/3 \\ 3\pi - \sqrt{7} \end{bmatrix}\)

2.14. \(\quad -2(Z+W) = \begin{bmatrix} -2 -2\sqrt{3} & 12 & -11 \\4 & -16 & 26 \\-30 & 14 =2 & -20-2\pi \end{bmatrix}\)

2.15. \(\quad N-4M = \begin{bmatrix} -4 -\pi & 35/4 & -13 & -14 \\-20 & 4-\sqrt{5} & x - 4\sqrt{2} & 31 \end{bmatrix}\)

Q3

3.1. \(Q, S, T\) are all square, but \(R\) isn’t.

3.2. \(Q,T\) are upper triangular, but \(R,S\) aren’t.

3.3. \(S,T\) are lower triangular, but \(Q,R\) aren’t.

3.4. \(T\) is diagonal, but \(Q,R,S\) aren’t.



Version history

v1.0: initial version created 04/25 by Jessica Taberner as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).