Questions: Introduction to matrices

Author

Jessica Taberner

Summary
A selection of questions for the study guide on introduction to matrices.

Before attempting these questions, it is highly recommended that you read Guide: Introduction to matrices.

Q1

You are given the following matrices:

\[A = \begin{bmatrix} 2 & -1 & \sqrt{3} \\ 0 & 4 & -\pi \end{bmatrix} \textsf{ , }\quad B = \begin{bmatrix} 2 & -2 \\ 3 & -4 \end{bmatrix} \textsf{ , }\quad C = \begin{bmatrix} 0 & -1 & 2 & 3\\ 4 & -\sqrt{2} & 1 & -5 \\ 6 & \pi & -7 & 0 \end{bmatrix} \textsf{ , }\quad D = \begin{bmatrix} 3 & -1\\ \sqrt{5} & x\\ y & 1/2 \end{bmatrix},\]

\[E = \begin{bmatrix} 1 & -2 & \sqrt{7}\\ 1 & 3 & -4\\ 5 & -6 & 7 \end{bmatrix} \textsf{ , }\quad F = \begin{bmatrix} -2 & 3/4 & -1\\ \pi & -\sqrt{3} & x^2 \\ 7 & 0 & -5 \end{bmatrix} \textsf{ , }\quad G = \begin{bmatrix} -1 \\ 5 \\ 1 \\ 8 \\ 3 \end{bmatrix} \textsf{ , }\quad H = \begin{bmatrix} \sqrt{2} & -3 & 4\\ 5 & -1 & 2/3\\ x & \pi & -7 \\ 8 & 9 & -10 \end{bmatrix}.\]

1.1. Give the dimensions of all matrices \(A-H\).

1.2. Give the values of the following entries:

  1. \(\quad [A]_{11}\)

  2. \(\quad [G]_{41}\)

  3. \(\quad [D]_{12}\)

  4. \(\quad [F]_{32}\)

  5. \(\quad [B]_{21}\)

  6. \(\quad [A]_{12}\)

  7. \(\quad [C]_{23}\)

  8. \(\quad [E]_{23}\)

  9. \(\quad [H]_{31}\)

  10. \(\quad [H]_{13}\)

  11. \(\quad [E]_{32}\)

  12. \(\quad [G]_{11}\)

1.3. Give the main diagonals of the matrices \(A\), \(C\), \(E\), and \(G\).

Q2

You are given the following matrices:

\[ X = \begin{bmatrix} 3 \\ -\sqrt{5} \\ 2 \\ \pi \end{bmatrix} \textsf{ , }\quad Y = \begin{bmatrix} -1 \\ 5 \\ 2/3 \\ -\sqrt{7} \end{bmatrix} \textsf{ , }\quad Z = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 1 & -5 \\ 6 & -7 & \pi \end{bmatrix} \textsf{ , }\quad W = \begin{bmatrix} \sqrt{3} & -4 & 5/2 \\ -6 & 7 & -8 \\ 9 & -1 & 10 \end{bmatrix},\]

\[M = \begin{bmatrix} 1 & -2 & 3 & 4\\ 5 & -1 & \sqrt{2} & -6 \end{bmatrix} \textsf{ , }\quad N = \begin{bmatrix} -\pi & 3/4 & -1 & 2 \\ 0 & -\sqrt{5} & x & 7 \end{bmatrix} \textsf{ , }\quad O = \begin{bmatrix} 1 & -2 \\ 3 & 4 \\ -5 & 1 \end{bmatrix} \textsf{ , }\quad P = \begin{bmatrix} \sqrt{3} & -4 \\ \pi & 5 \\ -6 & 7 \end{bmatrix}.\]

Calculate the following questions using matrix addition, subtraction, and scalar multiplication:

2.1. \(\quad X+Y\)

2.2. \(\quad Z-W\)

2.3. \(\quad N+M\)

2.4. \(\quad O-P\)

2.5. \(\quad 3X\)

2.6. \(\quad -2Y\)

2.7. \(\quad xZ\)

2.8. \(\quad -4W\)

2.9. \(\quad yM\)

2.10. \(\quad 7N\)

2.11. \(\quad (1/2)O\)

2.12. \(\quad -4P\)

2.13. \(\quad 3X+Y\)

2.14. \(\quad -2(Z+W)\)

2.15. \(\quad N-4M\)

Q3

You are given the following matrices:

\[Q = \begin{bmatrix} 2 & 3 & 1 & 4 \\0 & 3 & 1 & 4\\ 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 4 \end{bmatrix} \textsf{ , }\quad R = \begin{bmatrix} -1 & 1 \\ 3 & -3 \\ \pi & -2\pi \\ 5 & 15\end{bmatrix} \textsf{ , }\quad S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{bmatrix} \textsf{ , }\quad T = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8\end{bmatrix},\]

Give their main diagonals, and state whether each of the matrices are:

3.1. square;

3.2. upper triangular;

3.3. lower triangular;

3.4. diagonal.


After attempting the questions above, please click this link to find the answers.


Version history

v1.0: initial version created 04/25 by Jessica Taberner as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).