Answers: Vector addition and scalar multiplication

Author

Renee Knapp, Kin Wang Pang

Summary
Answers to questions relating to the guide on vector addition and scalar multiplication.

These are the answers to Questions: Addition and scalar multiplication.

Please attempt the questions before reading these answers!

Q1

1.1. For the \(\mathbf{i}\) component, \(4 + 8 = 12\).For the \(\mathbf{j}\) component, \(5 + 2 = 7\).For the \(\mathbf{k}\) component, \(7 + 4 = 11\). So the answer is \(\mathbf{a} + \mathbf{b} = 12\mathbf{i} + 7\mathbf{j} + 11\mathbf{k}\).

1.2. \(\mathbf{a} + \mathbf{b} = 2\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}\).

1.3. \(\mathbf{a} - \mathbf{b} = 2\mathbf{i} - 11\mathbf{j} + 14\mathbf{k}\).

1.4. You can solve this by doing addition componentwise. \(\mathbf{i}\) component: \(4- (3+11) = -10\), \(\mathbf{j}\) component: \(12- (-3-4) = 19\), \(\mathbf{k}\) component: \(-7-(-2+9) = -14\). So the answer is \(-10\mathbf{i} + 19\mathbf{j} -14\mathbf{k}\).

Q2

2.1. \(\mathbf{a} + \mathbf{b} = \begin{bmatrix}4x \\7y\\0\end{bmatrix}\)

2.2. \(\mathbf{a} - \mathbf{b} = \begin{bmatrix}7 \\ 3y - 2x \\ -z\end{bmatrix}\)

2.3. \(\mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}\) or \(\begin{bmatrix}0\\0\\0\end{bmatrix}\).

2.4. \(\mathbf{a}\).

Q3

3.1. \(3\mathbf{u} = (3)5\mathbf{j} + (3)6\mathbf{k} = 15\mathbf{j} + 18\mathbf{k}\).

3.2. \(-6\mathbf{v} = \begin{bmatrix}0\\18\\-42\end{bmatrix}\).

3.3. \(4\mathbf{v} - 3\mathbf{u} = \begin{bmatrix}0\\-27\\10\end{bmatrix}\)

3.4. \(-2\mathbf{w} - (4\mathbf{u} -2\mathbf{v}) = \begin{bmatrix}-4\\-32\\-2\end{bmatrix}\)

Q4

4.1. By the laws of vector addition, \(\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB}\), where \(\overrightarrow{OA}\) and \(\overrightarrow{OB}\) are the respective coordinates of \(A\) and \(B\) written in vector form. You can find \(\overrightarrow{AB}\) by solving the above equation. \(\overrightarrow{AB} = \begin{bmatrix}-2-3\\5-4\\7-5\end{bmatrix} = \begin{bmatrix}-5\\1\\2\end{bmatrix}\)

4.2.\(\overrightarrow{AB} = \begin{bmatrix}4\\6\\0\end{bmatrix}\), \(\overrightarrow{AC} = \begin{bmatrix}-2\\-4\\-5\end{bmatrix}\). \(\overrightarrow{AB} - \overrightarrow{AC} = \begin{bmatrix}6\\10\\5\end{bmatrix}\). You can also calculate this by noticing \(\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}\). Then \(\overrightarrow{CB} = \begin{bmatrix}6-0\\11-1\\7-2\end{bmatrix} = \begin{bmatrix}6\\10\\5\end{bmatrix}\) as required.

4.3. \(\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}\). \(\begin{bmatrix}1\\5\\9\end{bmatrix} - \begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix} = \begin{bmatrix}6\\7\\-2\end{bmatrix}\). Solving this gives \(A = (-5,-2,11)\).

4.4. Let \(\lambda\) and \(\mu\) be scalars. \(\lambda \mathbf{a} + \mu \mathbf{b} = 13\mathbf{i} -9\mathbf{j}\). This gives you the simultaneous equations \[\begin{align*} 2\lambda + 3\mu &= 13 \tag{\textsf{$\mathbf{i}$ component}}\\ 3\lambda -5\mu &= -9 \tag{\textsf{$\mathbf{j}$ component}} \end{align*}\] Solving this gives \(\mu = 3\), \(\lambda = 2\), which gives the answer \(2\mathbf{a} + 3\mathbf{b}\).

4.5. \(2\begin{bmatrix}2\\5\\z\end{bmatrix} + 3\begin{bmatrix}-1\\-3\\4\end{bmatrix} = \begin{bmatrix}x\\y\\0\end{bmatrix}\). Solving this gives \(x = 3\), \(y = 1\) and \(z = -6\).

4.6. As they are parallel \(\mathbf{a} = \lambda \mathbf{b}\) for some real scalar \(\lambda\). This gives the simultaneous equations \[\begin{align*} x - 7 &= -2\lambda \tag{\textsf{$\mathbf{i}$ component}}\\ 5x+1 &= 8\lambda \tag{\textsf{$\mathbf{k}$ component}} \end{align*}\] Eliminating \(\lambda\) and solving gives \(x = 3\).



Version history and licensing

v1.0: initial version created 08/23 by Renee Knapp, Kin Wang Pang as part of a University of St Andrews STEP project.

  • v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here.