Questions: Vector addition and scalar multiplication

Author

Renee Knapp, Kin Wang Pang

Summary
A selection of questions for the study guide on vector addition and scalar multiplication.

Before attempting these questions, it is highly recommended that you read Guide: Vector addition and scalar multiplication.

Q1

Answer the following questions.

1.1. If \(\mathbf{a} = 4\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}\) and \(\mathbf{b} = 8\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}\), find \(\mathbf{a} + \mathbf{b}\).

1.2. If \(\mathbf{a} = 3\mathbf{j} + 4\mathbf{k}\) and \(\mathbf{b} = 2\mathbf{i} + 5\mathbf{k}\), find \(\mathbf{a} + \mathbf{b}\).

1.3. If \(\mathbf{a} = -2\mathbf{i} + 6\mathbf{k}\) and \(\mathbf{b} = -4\mathbf{i} + 11\mathbf{j} -8\mathbf{k}\), find \(\mathbf{a} - \mathbf{b}\).

1.4. If \(\mathbf{a} = 4\mathbf{i} + 12\mathbf{j} -7\mathbf{k}\), \(\mathbf{b} = 3\mathbf{i} -3\mathbf{j} -2\mathbf{k}\) and \(\mathbf{c} = 11\mathbf{i} -4\mathbf{j} +9\mathbf{k}\), find \(\mathbf{a} - (\mathbf{b} + \mathbf{c})\).

Q2

Solve the following, expressing your answers in terms of the unknown scalars \(x,y,z\).

2.1. If \(\mathbf{a} = \begin{bmatrix}x \\2y\\0\end{bmatrix}\) and \(\mathbf{b} = \begin{bmatrix}3x \\5y\\0\end{bmatrix}\), find \(\mathbf{a} + \mathbf{b}\).

2.2. If \(\mathbf{a} = \begin{bmatrix}5 \\3y\\5z\end{bmatrix}\) and \(\mathbf{b} = \begin{bmatrix}-2\\2x\\6z\end{bmatrix}\), find \(\mathbf{a} - \mathbf{b}\).

2.3. If \(\mathbf{a} = \begin{bmatrix}2x \\3y\\4z\end{bmatrix}\), \(\mathbf{b} = \begin{bmatrix}-2x\\y\\0\end{bmatrix}\) and \(\mathbf{c} = \begin{bmatrix}0\\4y\\4z\end{bmatrix}\), find \(\mathbf{a} + \mathbf{b} - \mathbf{c}\).

2.4. If \(\mathbf{a} = \begin{bmatrix}2x\\3y\\5z\end{bmatrix}\), what is \(\mathbf{a} + \mathbf{0}\)?

Q3

Answer the following questions.

3.1. If \(\mathbf{u} = 5\mathbf{j} + 6\mathbf{k}\), find \(3\mathbf{u}\).

3.2. If \(\mathbf{v} = \begin{bmatrix}0\\-3\\7\end{bmatrix}\), find \(-6\mathbf{v}\).

3.3. If \(\mathbf{u} = \begin{bmatrix}0\\5\\6\end{bmatrix}\) and \(\mathbf{v} = \begin{bmatrix}0\\-3\\7\end{bmatrix}\), find \(4\mathbf{v} - 3\mathbf{u}\).

3.4. If \(\mathbf{u} = \begin{bmatrix}0\\5\\6\end{bmatrix}\), \(\mathbf{v} = \begin{bmatrix}0\\-3\\7\end{bmatrix}\) and \(\mathbf{w} = \begin{bmatrix}2\\3\\-4\end{bmatrix}\), find \(-2\mathbf{w} - (4\mathbf{u} -2\mathbf{v})\).

Q4

Answer the following questions.

4.1. If \(A = (3,4,5)\). \(B = (-2,5,7)\), find \(\overrightarrow{AB}\).

4.2. If \(A = (2,5,7)\), \(B = (6,11,7)\) and \(C = (0,1,2)\), find \(\overrightarrow{AB} - \overrightarrow{AC}\).

4.3. If \(\overrightarrow{AB} = \begin{bmatrix}6\\7\\-2\end{bmatrix}\) and \(B = (1,5,9)\), find the coordinates of \(A\).

4.4. If \(\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}\) and \(\mathbf{b} = 3\mathbf{i} -5\mathbf{j}\), find \(13\mathbf{i} -9\mathbf{j}\) in terms of \(\mathbf{a}\) and \(\mathbf{b}\).

4.5. If \(\mathbf{a} = \begin{bmatrix}3\\5\\z\end{bmatrix}\), \(\mathbf{b} = \begin{bmatrix}-1\\-3\\4\end{bmatrix}\) and \(2\mathbf{a} + 3\mathbf{b} = \begin{bmatrix}x\\y\\0\end{bmatrix}\), solve for the unknown scalars \(x,y,z\).

4.6. Given that \(\mathbf{a}\) and \(\mathbf{b}\) are parallel, if \(\mathbf{a} = (x-7)\mathbf{i} + (5x+1)\mathbf{k}\) and \(\mathbf{b} = -2\mathbf{i} + 8\mathbf{k}\), find \(x\).


After attempting the questions above, please click this link to find the answers.


Version history and licensing

v1.0: initial version created 08/23 by Renee Knapp, Kin Wang Pang as part of a University of St Andrews STEP project.

  • v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).