Questions: Laws of indices

Author

Isabella Lewis, Akshat Srivastava

Summary
A selection of questions for the study guide on laws of indices.

Before attempting these questions, it is highly recommended that you read Guide: Laws of indices.

Q1

Express each of the following as a single real number.

1.1. \(\quad 3^4\)

1.2. \(\quad 125^{\frac{2}{3}}\)

1.3. \(\quad 32^{\frac{2}{5}}\)

1.4. \(\quad 729^{-\frac{2}{3}}\)

1.5. \(\quad 4^3\cdot2^5\)

1.6. \(\quad 2^2\cdot3^2\)

1.7. \(\quad 8^5\cdot6^5\)

1.8. \(\quad 12^{6}\cdot3^{6}\)

1.9. \(\displaystyle\quad \frac{9^2}{27^2}\)

1.10. \(\quad (5^2)^2\)

1.11. \(\quad (35^0)^9\)

1.12. \(\quad (35^9)^0\)

1.13. \(\quad (729^9)^{\frac{1}{9}}\)

1.14. \(\quad 7^{-3}\)

1.15. \(\quad \dfrac{4^5}{2^5}\)

1.16. \(\quad \dfrac{2^{-2}}{13^{-2}}\)

1.17. \(\quad 64^{\frac{4}{3}}\)

1.18. \(\displaystyle\quad \left(\frac{4^3\cdot{3^3}}{6^3}\right)\)

1.19. \(\quad \left(\dfrac{4^2\cdot{8^2}}{2^2}\right)\cdot{\left(\dfrac{1}{2}\right)^2}\)

1.20. \(\quad \dfrac{\left[\left(\frac{-2}{3}\right)^{-3}\cdot\left(\frac{-3}{5}\right)^{-3}\right]}{\left({\frac{2}{3}}\right)^{-3}}\)

1.21. \(\quad \dfrac{\left(\frac{1}{2}\right)^4\left(\frac{3}{5}\right)^4}{\left(\frac{8}{3}\right)^{4}}\)

1.22. \(\displaystyle\quad \left(\frac{2}{3}\right)^{14}\cdot\left(\frac{9}{12}\right)^{14}\)

Q2

Evaluate the following expressions, writing your answer in the simplest possible form.

2.1. \(\quad (b^{7})^{4}\)

2.2. \(\quad y^{13}\cdot{y^{5}}\)

2.3. \(\quad a^2\cdot b^2\)

2.4. \(\quad \dfrac{x^{13}}{x^5}\)

2.5. \(\quad (y^{-2})^5\)

2.6. \(\quad a^{-4}\cdot b^{-4}\)

2.7. \(\quad (7z^{-5})^3\)

2.8. \(\quad \dfrac{8x^5}{4x^{-5}}\)

2.9. \(\quad (x^{2})^3\cdot{x^{5}}\)

2.10. \(\quad \dfrac{2a^{-4}}{3a^{-2}}\)

2.11. \(\quad \dfrac{x^5}{y^5}\)

2.12. \(\quad \dfrac{2y^3}{2y^5}\)

2.13. \(\displaystyle\quad \left(\frac{2}{a}\right)^{4}\cdot\left(\frac{a}{12}\right)^{3}\)

2.14. \(\quad \dfrac{25t^{-4}}{60t^{5}}\)

2.15. \(\displaystyle\quad \left(\frac{a}{b}\right)^{-4}\cdot\left(\frac{c}{d}\right)^4\cdot\left(\frac{e}{f}\right)^4\)

2.16. \(\quad \dfrac{5^{x+1}\cdot6^{x+1}}{3^{x+1}}\)

2.17. \(\quad \left(a^{\frac{1}{2}}\right)\cdot\left(b^{-\frac{1}{2}}\right)\)

2.18. \(\displaystyle\quad \left(\frac{a}{b}\right)^n\cdot\left(\frac{c}{d}\right)^{-n}\)


After attempting the questions above, please click this link to find the answers..


Version history and licensing

v1.0: initial version created 08/23 by Isabella Lewis, Akshat Srivastava as part of a University of St Andrews STEP project.

  • v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).