Answers: Laws of indices

Author

Isabella Lewis, Akshat Srivastava

Summary
Answers to questions relating to using laws of indices.

These are the answers to Questions: Laws of indices.

Please attempt the questions before reading these answers!

Q1

1.1. \(3^4=81\)

1.2. \(125^{\frac{2}{3}}=5^2=25\)

1.3. \(32^{\frac{2}{5}}=2^2=4\)

1.4. \(729^{\frac{-2}{3}}=9^{-2}=\frac{1}{81}\)

1.5. \(4^3\cdot2^5=2^6\cdot2^5=2^{11}=2048\)

1.6. \(2^2\cdot3^2=(2\cdot3)^2=6^2\)

1.7. \(8^5\cdot6^5=(8\cdot6)^5=48^5\)

1.8. \(12^{6}\cdot 3^{6}=(12\cdot3)^{6}=36^{6} = 2176782336\)

1.9. \(\displaystyle \frac{9^2}{27^2}=3^{-2}=\frac{1}{9}\)

1.10. \((5^2)^2=5^4=625\)

1.11. \((35^0)^9=1\)

1.12. \((35^9)^0=1\)

1.13. \((729^9)^{\frac{1}{9}}=729^{\frac{9}{9}}=729\)

1.14. \(\displaystyle 7^{-3}= \frac{1}{7^3} = \frac{1}{343}\)

1.15. \((\frac{4^5}{2^5})=(\frac{4}{2})^5=2^5\)

1.16. \((\frac{2^{-2}}{13^{-2}})=(\frac{2}{13})^{-2}=(\frac{13}{2})^{2}\)

1.17. \(64^{\frac{4}{3}}=4^4=256\)

1.18. \(\displaystyle\left(\frac{4^3\cdot{3^3}}{6^3}\right)=\left(\frac{4\cdot3}{6}\right)^3=\left(\frac{12}{6}\right)^3=2^3=8\)

1.19. \(\left(\dfrac{4^2\cdot{8^2}}{2^2}\right)\cdot{\left(\dfrac{1}{2}\right)^2}={\left(\dfrac{4\cdot8}{2}\right)^2}\cdot{\left(\dfrac{1}{2}\right)^2}=\left(\dfrac{4\cdot8\cdot1}{2\cdot2}\right)^2=\left(\dfrac{32}{4}\right)^2=8^2=64\)

1.20. \(\displaystyle\dfrac{\left[\left(\frac{-2}{3}\right)^{-3}\cdot\left(\frac{-3}{5}\right)^{-3}\right]}{\left({\frac{2}{3}}\right)^{-3}}= \frac{\left({\frac{6}{15}}\right)^{-3}}{\left({\frac{2}{3}}\right)^{-3}}=\frac{\left({\frac{15}{6}}^{3}\right)}{\left({\frac{3}{2}}\right)^{3}}=\left(\frac{15\cdot2}{6\cdot3}\right)^3=\left(\frac{5}{3}\right)^3={\frac{125}{27}}\)

1.21. \(\displaystyle\dfrac{\left(\frac{1}{2}\right)^4\left(\frac{3}{5}\right)^4}{\left(\frac{8}{3}\right)^{4}}=\frac{\left(\frac{5}{6}\right)^{4}}{\left(\frac{8}{3}\right)^{4}}=\left(\frac{15}{48}\right)^4 = \left(\frac{5}{16}\right)^4 = \frac{625}{65536}\)

1.22. \(\displaystyle\left(\frac{2}{3}\right)^{14}\cdot\left(\frac{9}{12}\right)^{14}=\left(\left(\frac{2}{3}\right)\cdot\left(\frac{9}{12}\right)\right)^{14}=\left(\frac{18}{36}\right)^{14}=\left(\frac{1}{2}\right)^{14} = \frac{1}{16384}\)

Q2

2.1. \((b^{7})^{4}=b^{28}\)

2.2. \(y^{13}\cdot{y^{5}}=y^{18}\)

2.3. \(a^2\cdot b^2=(ab)^2\)

2.4. \(\dfrac{x^{13}}{x^5}=x^8\)

2.5. \((3y^{-2})^5=(3)^5\cdot(y^{-2})^5=243y^{-10}\)

2.6. \((a)^{-4}\cdot(b)^{-4}=(ab)^{-4}=\frac{1}{(ab)^4}\)

2.7. \((7z^{-5})^3=(7)^3\cdot(z^{-5})^3=343z^{-15}\)

2.8. \((\frac{8x^5}{4x^{-5}})=2x^{(5+5)}=2x^{10}\)

2.9. \(((x^{2})^3\cdot{x^{5}})=x^6\cdot{x^5}=x^{11}\)

2.10. \(\dfrac{2a^{-4}}{3a^{-2}}=\left(\dfrac{2}{3}\right)\cdot(a^{-4+2})=\dfrac{2}{3a^2}\)

2.11. \(\dfrac{x^5}{y^5}=\left(\dfrac{x}{y}\right)^5\)

2.12. \(\dfrac{2y^3}{2y^5}=y^{-2}\)

2.13. \(\displaystyle\left(\frac{2}{a}\right)^{4}\cdot\left(\frac{a}{12}\right)^{3}=\frac{2^4\cdot{a^3}}{a^4\cdot{12^3}}=\frac{16}{1728a}=\frac{1}{108a}\)

2.14. \(\dfrac{25t^{-4}}{60t^{5}}=\dfrac{5}{12t^9}\)

2.15. \(\displaystyle{\left(\frac{a}{b}\right)^{-4}}\cdot{\left(\frac{c}{d}\right)^4}\cdot{\left(\frac{e}{f}\right)^4}=\left(\frac{bce}{adf}\right)^4\)

2.16. \({\dfrac{5^{x+1}\cdot6^{x+1}}{3^{x+1}}}=\left(\dfrac{5\cdot6}{3}\right)^{x+1}=10^{x+1}\)

2.17. \(\displaystyle a^{\frac{1}{2}}\cdot b^{-\frac{1}{2}}=\left(\frac{a}{b}\right)^{\frac{1}{2}}=\sqrt{\frac{a}{b}}\)

2.18. \(\left(\frac{a}{b}\right)^n\cdot\left(\frac{c}{d}\right)^{-n}=\left(\left(\frac{a}{b}\right)\cdot\left(\frac{d}{c}\right)\right)^n=\left(\frac{ad}{bc}\right)^n\)



Version history and licensing

v1.0: initial version created 08/23 by Isabella Lewis, Akshat Srivastava as part of a University of St Andrews STEP project.

  • v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).