Questions: Vector addition and scalar multiplication

Author

Renee Knapp, Kin Wang Pang

Summary
A selection of questions for the study guide on vector addition and scalar multiplication.

Before attempting these questions, it is highly recommended that you read Guide: Vector addition and scalar multiplication.

Q1

Answer the following questions.

1.1. If \(\mathbf{a} = 4\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}\) and \(\mathbf{b} = 8\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}\), find \(\mathbf{a} + \mathbf{b}\).

1.2. If \(\mathbf{a} = 3\mathbf{j} + 4\mathbf{k}\) and \(\mathbf{b} = 2\mathbf{i} + 5\mathbf{k}\), find \(\mathbf{a} + \mathbf{b}\).

1.3. If \(\mathbf{a} = -2\mathbf{i} + 6\mathbf{k}\) and \(\mathbf{b} = -4\mathbf{i} + 11\mathbf{j} -8\mathbf{k}\), find \(\mathbf{a} - \mathbf{b}\).

1.4. If \(\mathbf{a} = 4\mathbf{i} + 12\mathbf{j} -7\mathbf{k}\), \(\mathbf{b} = 3\mathbf{i} -3\mathbf{j} -2\mathbf{k}\) and \(\mathbf{c} = 11\mathbf{i} -4\mathbf{j} +9\mathbf{k}\), find \(\mathbf{a} - (\mathbf{b} + \mathbf{c})\).

Q2

Solve the following, expressing your answers in terms of the unknown scalars \(x,y,z\).

2.1. If \(\mathbf{a} = \begin{pmatrix}x \\2y\\0\end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix}3x \\5y\\0\end{pmatrix}\), find \(\mathbf{a} + \mathbf{b}\).

2.2. If \(\mathbf{a} = \begin{pmatrix}5 \\3y\\5z\end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix}-2\\2x\\6z\end{pmatrix}\), find \(\mathbf{a} - \mathbf{b}\).

2.3. If \(\mathbf{a} = \begin{pmatrix}2x \\3y\\4z\end{pmatrix}\), \(\mathbf{b} = \begin{pmatrix}-2x\\y\\0\end{pmatrix}\) and \(\mathbf{c} = \begin{pmatrix}0\\4y\\4z\end{pmatrix}\), find \(\mathbf{a} + \mathbf{b} - \mathbf{c}\).

2.4. If \(\mathbf{a} = \begin{pmatrix}2x\\3y\\5z\end{pmatrix}\), what is \(\mathbf{a} + \mathbf{0}\)?

Q3

Answer the following questions.

3.1. If \(\mathbf{u} = 5\mathbf{j} + 6\mathbf{k}\), find \(3\mathbf{u}\).

3.2. If \(\mathbf{v} = \begin{pmatrix}0\\-3\\7\end{pmatrix}\), find \(-6\mathbf{v}\).

3.3. If \(\mathbf{u} = \begin{pmatrix}0\\5\\6\end{pmatrix}\) and \(\mathbf{v} = \begin{pmatrix}0\\-3\\7\end{pmatrix}\), find \(4\mathbf{v} - 3\mathbf{u}\).

3.4. If \(\mathbf{u} = \begin{pmatrix}0\\5\\6\end{pmatrix}\), \(\mathbf{v} = \begin{pmatrix}0\\-3\\7\end{pmatrix}\) and \(\mathbf{w} = \begin{pmatrix}2\\3\\-4\end{pmatrix}\), find \(-2\mathbf{w} - (4\mathbf{u} -2\mathbf{v})\).

Q4

Answer the following questions.

4.1. If \(A = (3,4,5)\). \(B = (-2,5,7)\), find \(\overrightarrow{AB}\).

4.2. If \(A = (2,5,7)\), \(B = (6,11,7)\) and \(C = (0,1,2)\), find \(\overrightarrow{AB} - \overrightarrow{AC}\).

4.3. If \(\overrightarrow{AB} = \begin{pmatrix}6\\7\\-2\end{pmatrix}\) and \(B = (1,5,9)\), find the coordinates of \(A\).

4.4. If \(\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}\) and \(\mathbf{b} = 3\mathbf{i} -5\mathbf{j}\), find \(13\mathbf{i} -9\mathbf{j}\) in terms of \(\mathbf{a}\) and \(\mathbf{b}\).

4.5. If \(\mathbf{a} = \begin{pmatrix}3\\5\\z\end{pmatrix}\), \(\mathbf{b} = \begin{pmatrix}-1\\-3\\4\end{pmatrix}\) and \(2\mathbf{a} + 3\mathbf{b} = \begin{pmatrix}x\\y\\0\end{pmatrix}\), solve for the unknown scalars \(x,y,z\).

4.6. Given that \(\mathbf{a}\) and \(\mathbf{b}\) are parallel, if \(\mathbf{a} = (x-7)\mathbf{i} + (5x+1)\mathbf{k}\) and \(\mathbf{b} = -2\mathbf{i} + 8\mathbf{k}\), find \(x\).


After attempting the questions above, please click this link to find the answers.


Version history and licensing

v1.0: initial version created 08/23 by Renee Knapp, Kin Wang Pang as part of a University of St Andrews STEP project.

  • v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here.