Factsheet: Negative binomial distribution
#| '!! shinylive warning !!': |
#| shinylive does not work in self-contained HTML documents.
#| Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 850
library(shiny)
library(bslib)
library(ggplot2)
ui <- page_fluid(
title = "Negative binomial distribution calculator",
layout_columns(
col_widths = c(4, 8),
# Left column - Inputs
card(
card_header("Parameters"),
card_body(
numericInput("r", "Number of successes (r):", value = 5, min = 1, step = 1),
sliderInput("p", "Probability of success (p):", min = 0.01, max = 0.99, value = 0.3, step = 0.01),
numericInput("max_x", "Maximum x to display:", value = 20, min = 10, step = 5),
hr(),
radioButtons("prob_type", "Probability to calculate:",
choices = list("P(X ≤ x)" = "less",
"P(X ≥ x)" = "greater",
"P(x ≤ X ≤ y)" = "between"),
selected = "less"),
conditionalPanel(
condition = "input.prob_type == 'less' || input.prob_type == 'greater'",
sliderInput("x_value", "x value:", min = 0, max = 20, value = 8, step = 1)
),
conditionalPanel(
condition = "input.prob_type == 'between'",
sliderInput("x_lower", "Lower bound (x):", min = 0, max = 20, value = 5, step = 1),
sliderInput("x_upper", "Upper bound (y):", min = 0, max = 20, value = 12, step = 1)
)
)
),
# Right column - Plot
card(
card_header("Negative binomial distribution plot"),
card_body(
uiOutput("plot_title"),
plotOutput("distPlot", height = "300px")
)
)
),
# Bottom row - Results
card(
card_header("Results"),
card_body(
textOutput("explanation")
)
)
)
server <- function(input, output, session) {
# Update the range of the sliders when max_x changes
observe({
updateSliderInput(session, "x_value", max = input$max_x)
updateSliderInput(session, "x_lower", max = input$max_x)
updateSliderInput(session, "x_upper", max = input$max_x)
})
# Ensure that x_upper is always greater than or equal to x_lower
observe({
if (input$x_upper < input$x_lower) {
updateSliderInput(session, "x_upper", value = input$x_lower)
}
})
# Display the plot title with distribution parameters
output$plot_title <- renderUI({
title <- sprintf("NegBin(r = %d, p = %.2f)", input$r, input$p)
tags$h4(title, style = "text-align: center; margin-bottom: 15px;")
})
# Calculate the probability based on user selection
probability <- reactive({
if (input$prob_type == "less") {
prob <- pnbinom(input$x_value, size = input$r, prob = input$p)
explanation <- sprintf("P(X ≤ %d) = %.4f or %.2f%%",
input$x_value, prob, prob * 100)
return(list(prob = prob, explanation = explanation, type = "less", x = input$x_value))
} else if (input$prob_type == "greater") {
# For P(X ≥ x), we need 1 - P(X < x) = 1 - P(X ≤ x-1)
if (input$x_value == 0) {
prob <- 1 # P(X ≥ 0) is always 1
} else {
prob <- 1 - pnbinom(input$x_value - 1, size = input$r, prob = input$p)
}
explanation <- sprintf("P(X ≥ %d) = %.4f or %.2f%%",
input$x_value, prob, prob * 100)
return(list(prob = prob, explanation = explanation, type = "greater", x = input$x_value))
} else if (input$prob_type == "between") {
if (input$x_lower == input$x_upper) {
# Exact probability for a single value
prob <- dnbinom(input$x_lower, size = input$r, prob = input$p)
} else {
# P(x_lower ≤ X ≤ x_upper) = P(X ≤ x_upper) - P(X < x_lower) = P(X ≤ x_upper) - P(X ≤ x_lower-1)
upper_prob <- pnbinom(input$x_upper, size = input$r, prob = input$p)
if (input$x_lower == 0) {
lower_prob <- 0
} else {
lower_prob <- pnbinom(input$x_lower - 1, size = input$r, prob = input$p)
}
prob <- upper_prob - lower_prob
}
explanation <- sprintf("P(%d ≤ X ≤ %d) = %.4f or %.2f%%",
input$x_lower, input$x_upper, prob, prob * 100)
return(list(prob = prob, explanation = explanation, type = "between",
lower = input$x_lower, upper = input$x_upper))
}
})
# Display an explanation of the calculation
output$explanation <- renderText({
res <- probability()
return(res$explanation)
})
# Generate the negative binomial distribution plot
output$distPlot <- renderPlot({
# Create data frame for plotting
x_values <- 0:input$max_x
prob_mass <- dnbinom(x_values, size = input$r, prob = input$p)
df <- data.frame(x = x_values, probability = prob_mass)
# Create base plot
p <- ggplot(df, aes(x = x, y = probability)) +
geom_col(fill = "lightgray", color = "darkgray", alpha = 0.7) +
labs(x = "number of failures (X)", y = "probability mass function") +
theme_minimal() +
theme(panel.grid.minor = element_blank()) +
scale_x_continuous(breaks = pretty(x_values, n = 10))
# Add shaded area based on selected probability type
res <- probability()
if (res$type == "less") {
highlight_x <- 0:min(res$x, input$max_x)
highlight_df <- df[df$x %in% highlight_x, ]
p <- p + geom_col(data = highlight_df, aes(x = x, y = probability),
fill = "#3F6BB6", color = "darkgray", alpha = 0.8)
} else if (res$type == "greater") {
highlight_x <- res$x:input$max_x
highlight_df <- df[df$x %in% highlight_x, ]
p <- p + geom_col(data = highlight_df, aes(x = x, y = probability),
fill = "#3F6BB6", color = "darkgray", alpha = 0.8)
} else if (res$type == "between") {
highlight_x <- res$lower:min(res$upper, input$max_x)
highlight_df <- df[df$x %in% highlight_x, ]
p <- p + geom_col(data = highlight_df, aes(x = x, y = probability),
fill = "#3F6BB6", color = "darkgray", alpha = 0.8)
}
return(p)
})
}
shinyApp(ui = ui, server = server)
Where to use: The negative binomial distribution is often used to handle over-dispersed data, which means the variance exceeds the mean. It can serve as an alternative to the Poisson distribution, as the Poisson distribution assumes that the mean is equal to the variance. \(X\) represents the number of trials required to reach the targeted number of successes \(r\).
Notation: \(X \sim \textrm{NB}(r,p)\)
Parameters: Two numbers \(r,p\) where:
- \(r\) is an integer representing the targeted number of successes,
- \(p\) is a real number representing the probability of success in a single trial (where \(0 \le p \le 1\)).
Quantity | Value | Notes |
---|---|---|
Mean | \(\mathbb{E}(X) = \dfrac{r(1-p)}{p}\) | |
Variance | \(\mathbb{V}(X) = \dfrac{r(1-p)}{p^2}\) | |
PMF | \(\mathbb{P}(X=x)=\dfrac{(x+r-1)!}{(r-1)!x!}(1-p)^xp^r\) | |
CDF | \(\displaystyle\mathbb{P}(X\leq x)=\sum^{x}_{i=1}\frac{(x+r-1)!}{(r-1)!x!}(1-p)^xp^r\) |
Example: You flip a coin multiple times, and the probability of getting ‘heads’ is \(0.5\). You decide to stop flipping the coin once you get \(3\) ‘heads’; these do not have to be consecutive. Taking ‘heads’ as a success, this can be expressed as \(X \sim \textrm{NB}(3,0.5)\). It means the probability of success is \(0.5\), and you will stop conducting trials after you reach \(3\) successes.
Further reading
This interactive element appears in Overview: Probability distributions..
Version history
v1.0: initial version created 08/25 by tdhc.