Answers: The scalar product

Author

Ritwik Anand

Summary
Answers to questions relating to the guide on the scalar product.

These are the answers to Questions: The scalar product.

Please attempt the questions before reading these answers!

Q1

1.1. For \(\mathbf{a}= \begin{bmatrix}6\\3\\4\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}1\\4\\2\end{bmatrix}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = 26\).

1.2. For \(\mathbf{a}= \begin{bmatrix}10\\-7\\4\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}3\\-5\\13\end{bmatrix}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = 117\).

1.3. For \(\mathbf{a}= \begin{bmatrix}-44\\-12\\3\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}61\\-25\\93\end{bmatrix}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = -2237\).

1.4. For \(\mathbf{a}= \begin{bmatrix}54\\38\\0\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}32\\-55\\13\end{bmatrix}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = -362\).

1.5. For \(\mathbf{a}= 2\mathbf{i} + 7\mathbf{j} + \mathbf{k}\) and \(\mathbf{b}= 6\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = 48\).

1.6. For \(\mathbf{a}= -3\mathbf{i} + 10\mathbf{j} - 8\mathbf{k}\) and \(\mathbf{b}= \mathbf{i} - 12\mathbf{j} + 9\mathbf{k}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = -195\).

1.7. For \(\mathbf{a}= 17\mathbf{j} + 23\mathbf{k}\) and \(\mathbf{b}= 6\mathbf{i} - 23\mathbf{j} - 8\mathbf{k}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = -575\).

1.8. For \(\mathbf{a}= \mathbf{i}\) and \(\mathbf{b}= \mathbf{j}\), the scalar product is \(\mathbf{a}\cdot\mathbf{b} = 0\).

As the scalar product of \(\mathbf{a}= \mathbf{i}\) and \(\mathbf{b}= \mathbf{j}\) is \(0\), they are perpendicular to each other. This is true for any combination of any distinct pair of \(\mathbf{i}\), \(\mathbf{j}\), and \(\mathbf{k}\). However, since any vector is parallel to itself, it follows that \(\mathbf{i}\cdot \mathbf{i} = |\mathbf{i}||\mathbf{i}| = |1||1| = 1\); similar results hold for \(\mathbf{j}\cdot \mathbf{j}\) and \(\mathbf{k}\cdot \mathbf{k}\).

Q2

2.1. For \(\mathbf{a}= \begin{bmatrix}-5\\2\\-3\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}2\\-2\\11\end{bmatrix}\), the angle \(\theta\) is \(132.2^\circ\).

2.2. For \(\mathbf{a}= \begin{bmatrix}1\\1\\1\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}1\\-1\\1\end{bmatrix}\), the angle \(\theta\) is \(70.5^\circ\).

2.3. For \(\mathbf{a}= \begin{bmatrix}-8\\1\\-4\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}-1\\-5\\7\end{bmatrix}\), the angle \(\theta\) is \(108.7^\circ\).

2.4. For \(\mathbf{a}= \begin{bmatrix}1.2\\-1.4\\-3.1\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}-5.4\\9.7\\-7.5\end{bmatrix}\), the angle \(\theta\) is \(86.2^\circ\).

2.5. For \(\mathbf{a}= \begin{bmatrix}45\\65\\54\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}-19\\-58\\71\end{bmatrix}\), the angle \(\theta\) is \(95.1^\circ\).

2.6. For \(\mathbf{a}= \begin{bmatrix}1\\0\\0\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}0\\0\\1\end{bmatrix}\), the angle \(\theta\) is \(90^\circ\).

2.7. For \(\mathbf{a}= \begin{bmatrix}-1\\-2\\3\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}4\\-5\\6\end{bmatrix}\), the angle \(\theta\) is \(43.0^\circ\).

2.8. For \(\mathbf{a}= \begin{bmatrix}-17\\3\\8\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}12\\-19\\-16\end{bmatrix}\), the angle \(\theta\) is \(137.8^\circ\).

Q3

3.1. For \(\mathbf{a}= \begin{bmatrix}2\\4\\7\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}1\\\lambda\\-2\end{bmatrix}\) to be perpendicular, then \(\lambda= 3\).

3.2. For \(\mathbf{a}= \begin{bmatrix}0\\1\\\lambda\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}1\\2\\3\end{bmatrix}\) to be perpendicular, then \(\displaystyle\lambda= -\frac{2}{3}\).

3.3. For \(\mathbf{a}= \begin{bmatrix}9\\-2\\11\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}\lambda\\-\lambda\\3\end{bmatrix}\) to be perpendicular, then \(\lambda= -3\).

3.4. For \(\mathbf{a}= \begin{bmatrix}\lambda\\6\\1\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}\lambda\\\lambda\\8\end{bmatrix}\) to be perpendicular, then \(\lambda= -2\) or \(\lambda= -4\).

3.5. For \(\mathbf{a}= \begin{bmatrix}-2\lambda^2\\4\\14\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}3\\2\lambda\\1\end{bmatrix}\) to be perpendicular, then \(\displaystyle\lambda = \frac{7}{3}\) or \(\lambda= -1\).

3.6. For \(\mathbf{a}= \begin{bmatrix}-5\\9\\2\lambda\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}\lambda\\-2\\\lambda\end{bmatrix}\) to be perpendicular, then \(\displaystyle\lambda= \frac{9}{2}\) or \(\lambda= -2\).

3.7. For \(\mathbf{a}= \begin{bmatrix}-7\\4\\2\lambda\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}2\lambda\\1\\6\lambda\end{bmatrix}\) to be perpendicular, then \(\displaystyle\lambda= \frac{2}{3}\) or \(\displaystyle\lambda= \frac{1}{2}\).

3.8. For \(\mathbf{a}= \begin{bmatrix}-25\\-1\lambda^2\\-2\end{bmatrix}\) and \(\mathbf{b}= \begin{bmatrix}3\lambda\\-11\\7\end{bmatrix}\) to be perpendicular, then \(\lambda= 7\) or \(\displaystyle\lambda= -\frac{2}{11}\).



Version history and licensing

v1.0: initial version created 08/23 by Ritwik Anand as part of a University of St Andrews STEP project.

  • v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).