Answers: Arithmetic on complex numbers

Author

Charlotte McCarthy

Summary
Answers to questions relating to the guide on arithmetic on complex numbers.

These are the answers to Questions: Arithmetic on complex numbers.

Please attempt the questions before reading these answers!

Q1

1.1. \(\quad (5+7i)-(2+3i) = 3 + 4i\)

1.2. \(\quad (8+6i)+(2-4i) = 10 + 2i\)

1.3. \(\quad (4-i\sqrt{2})-(3+i\sqrt{7}) = 1 -(\sqrt{2}+\sqrt{7})i\)

1.4. \(\quad (\sqrt{8}+4i)-(\sqrt{5}+2i) = (2\sqrt{2} - \sqrt{5}) + 2i\)

1.5. \(\quad (\sqrt{7}+3i)+(2-i) = (\sqrt{7} + 2) + 2i\)

1.6. \(\quad (5 + i\sqrt{2}) - (7 - i) + (\sqrt{3} + 4i) = (\sqrt{3} - 2) + (\sqrt{2} + 5)i\)

Q2

2.1. \(\quad (2+3i)(4+5i) = -7 + 22i\)

2.2. \(\quad (3+i)(2-i) = 7 - i\)

2.3. \(\quad 4(6+3i) = 24 + 12i\)

2.4. \(\quad (1+i)^2 = 0 + 2i = 2i\)

2.5. \(\quad (3+2i)^3 = -9 + 46i\)

2.6. \(\quad (7-4i)^2(i-2) = -10 + 145i\)

2.7. \(\quad (1 - i\sqrt3)^3 = -8 + 0i = -8\)

2.8. \(\quad (5-2i)(5+2i) = 29 + 0i = 29\)

2.9. \(\quad (\sqrt{2} + i\sqrt{3})(\sqrt{8} - i\sqrt{3)} = 7 + i\sqrt{6}\)

Q3

3.1. \(\quad \dfrac{7-6i}{1+2i} = -1 - 4i\)

3.2. \(\quad \dfrac{4-i}{1+4i} = 0 - i = -i\)

3.3. \(\quad \dfrac{3}{5i} = 0 -\dfrac{3}{5}i = -\dfrac{3}{5}i\)

3.4. \(\quad \dfrac{4+2i}{3-i} = 1 + i\)

3.5. \(\quad \dfrac{9+i}{i} = 1 - 9i\)

3.6. \(\quad \dfrac{-2-2i}{-2+2i} = 0 + i = i\)

3.7. \(\quad \dfrac{1+5i}{-3i} = -\dfrac{5}{3} + \dfrac{1}{3}i\)

3.8. \(\quad \dfrac{-4}{1-i} = -2 - 2i\)

3.9. \(\quad \dfrac{1-3i}{1+2i} = -1 - i\)

Q4

4.1. \(\quad \dfrac{(6+4i)(3-i)}{2i} = 3 - 11i\)

4.2. \(\quad 3i(5-4i)+(6+2i) = 18 + 17i\)

4.3. \(\quad (2+3i)(1-i)-(5-4i) = 0 + 5i = 5i\)

4.4. \(\quad \dfrac{(5+2i)+(4-i)}{1+i} = 5 - 4i\)

4.5. \(\quad \dfrac{(2+i)^3}{(3+i)-(1+i)} = 1 + \dfrac{11}{2}i\)

4.6. \(\quad (\dfrac{6-3i}{2(1-i)})^2 = \dfrac{9}{2} + \dfrac{27}{8}i\)



Version history and licensing

v1.0: initial version created 11/24 by Charlotte McCarthy as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).