Factsheet: Trigonometric identities (degrees)

Mathematics
Author

Tom Coleman

Summary
A list of trigonometric identities with angles measured in degrees.

The main study guide for this factsheet is Guide: Trigonometric identities (degrees). If you would like to know more about these, please read the guide.

This factsheet measures angles in degrees. For the associated factsheet measuring angles in radians, please go to Factsheet: Trigonometric identities (radians).

Trigonometric identities

Periodicity and parity

For all angles \(\theta\) and for all whole numbers \(k\in\mathbb{Z}\):

\[\begin{aligned} \cos(-\theta) &= \cos(\theta) \\[0.25em] \sin(-\theta) &= -\sin(\theta) \\[0.25em] \tan(-\theta) &= -\tan(\theta) \\[0.25em] \cos(\theta + 360k) &= \cos(\theta) \\[0.25em] \sin(\theta + 360k) &= \sin(\theta) \\[0.25em] \tan(\theta + 180k) &= \tan(\theta) \end{aligned}\]

Pythagorean formulas

For all angles \(\theta\) \[\begin{aligned} \cos^2(\theta) + \sin^2(\theta) &= 1 \\[0.5em] 1 + \tan^2(\theta) &= \sec^2(\theta) \\[0.5em] \cot^2(\theta) + 1 &= \csc^2(\theta) \end{aligned}\]

Sum and difference formulas

For all angles \(\alpha,\beta\):

\[\begin{aligned} \cos(\alpha + \beta) &= \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \\[0.5em] \cos(\alpha - \beta) &= \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \\[0.5em] \sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\[0.5em] \sin(\alpha - \beta) &= \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) \\[0.5em] \tan(\alpha + \beta) &= \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}\\[0.5em] \tan(\alpha - \beta) &= \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)} \end{aligned}\]

Double angle formulas

For all angles \(\theta\):

\[\begin{aligned} \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) \\[0.5em] \sin(2\theta) &= 2\sin(\theta)\cos(\theta) \\[0.5em] \tan(2\theta) &= \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \end{aligned}\]

Shift formulas

For all angles \(\theta\):

\[\begin{aligned} \cos\left(\theta + 90\right) &= -\sin(\theta) \\[0.5em] \cos\left(\theta - 90\right) &= \sin(\theta) \\[0.5em] \sin\left(\theta + 90\right) &= \cos(\theta) \\[0.5em] \sin\left(\theta - 90\right) &= -\cos(\theta) \\[0.5em] \cos\left(\theta \pm 180\right) &= -\cos(\theta) \\[0.5em] \sin\left(\theta \pm 180\right) &= -\sin(\theta) \\[0.5em] \sin\left(180 - \theta\right) &= \sin(\theta) \\[0.5em] \cos\left(180 - \theta\right) &= -\cos(\theta) \end{aligned}\]

Sine and cosine rules

For a triangle with corners \(A,B,C\), angles \(\alpha\), \(\beta\), \(\gamma\) respectively at those corners, and sides \(a,b,c\) opposite their respective corners, the sine rule is

\[\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}\]

and the cosine rule is \[a^2 = b^2 + c^2 - 2bc\cos(\alpha).\]

Common values of trigonometric functions

Angle \(\theta\) \(0\) \(30\) \(45\) \(60\) \(90\) \(120\) \(135\) \(150\) \(180\)
\(\sin(\theta)\) \(0\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(1\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{1}{2}\) \(0\)
\(\cos(\theta)\) \(1\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{1}{2}\) \(0\) \(-\dfrac{1}{2}\) \(-\dfrac{\sqrt{2}}{2}\) \(-\dfrac{\sqrt{3}}{2}\) \(-1\)
\(\tan(\theta)\) \(0\) \(\dfrac{1}{\sqrt{3}}\) \(1\) \(\sqrt{3}\) undef. \(-\sqrt{3}\) \(-1\) \(-\dfrac{1}{\sqrt{3}}\) \(0\)


Version history

v1.0: created in 08/25 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).