Calculator: Lognormal distribution

Author

Michelle Arnetta and Tom Coleman

Summary
A calculator to work out cdfs for the lognormal distribution.
#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 740

library(shiny)
library(bslib)
library(ggplot2)

ui <- page_fluid(
  title = "Lognormal distribution calculator",
  
  layout_columns(
    col_widths = c(4, 8),
    
    # Left column - Inputs
    card(
      card_header("Parameters"),
      card_body(
        numericInput("meanlog", "Log mean (μ):", value = 0, step = 0.1),
        numericInput("sdlog", "Log standard deviation (σ):", value = 1, min = 0.01, step = 0.1),
        hr(),
        radioButtons("prob_type", "Probability to calculate:",
                    choices = list("P(X ≤ x)" = "less", 
                                  "P(X ≥ x)" = "greater", 
                                  "P(x ≤ X ≤ y)" = "between"),
                    selected = "less"),
        conditionalPanel(
          condition = "input.prob_type == 'less'",
          sliderInput("x_less", "x value:", min = 0, max = 10, value = 1, step = 0.1)
        ),
        conditionalPanel(
          condition = "input.prob_type == 'greater'",
          sliderInput("x_greater", "x value:", min = 0, max = 10, value = 1, step = 0.1)
        ),
        conditionalPanel(
          condition = "input.prob_type == 'between'",
          sliderInput("x_lower", "Lower bound (x):", min = 0, max = 10, value = 0.5, step = 0.1),
          sliderInput("x_upper", "Upper bound (y):", min = 0, max = 10, value = 2, step = 0.1)
        )
      )
    ),
    
    # Right column - Plot
    card(
      card_header("Lognormal distribution plot"),
      card_body(
        uiOutput("plot_title"),
        plotOutput("distPlot", height = "300px")
      )
    )
  ),
  
  # Bottom row - Results
  card(
    card_header("Results"),
    card_body(
      textOutput("explanation")
    )
  )
)

server <- function(input, output, session) {
  
  # When parameters change, adjust the range of sliders
  observe({
    # For lognormal distribution, adjust slider based on parameters
    meanlog <- input$meanlog
    sdlog <- input$sdlog
    
    # Use a heuristic to determine a reasonable upper bound
    # This captures most of the meaningful density
    max_x <- min(qlnorm(0.995, meanlog, sdlog), 100)
    
    updateSliderInput(session, "x_less", max = max_x)
    updateSliderInput(session, "x_greater", max = max_x)
    updateSliderInput(session, "x_lower", max = max_x)
    updateSliderInput(session, "x_upper", max = max_x)
  })
  
  # Ensure that x_upper is always greater than or equal to x_lower
  observe({
    if (input$x_upper < input$x_lower) {
      updateSliderInput(session, "x_upper", value = input$x_lower)
    }
  })
  
  # Display the plot title with distribution parameters
  output$plot_title <- renderUI({
    title <- sprintf("Lognormal(μ = %.2f, σ = %.2f)", input$meanlog, input$sdlog)
    tags$h4(title, style = "text-align: center; margin-bottom: 15px;")
  })
  
  # Calculate the probability based on user selection
  probability <- reactive({
    if (input$prob_type == "less") {
      prob <- plnorm(input$x_less, meanlog = input$meanlog, sdlog = input$sdlog)
      explanation <- sprintf("P(X ≤ %.1f) = %.6f or %.4f%%", 
                           input$x_less, prob, prob * 100)
      return(list(prob = prob, explanation = explanation, type = "less", x = input$x_less))
      
    } else if (input$prob_type == "greater") {
      prob <- 1 - plnorm(input$x_greater, meanlog = input$meanlog, sdlog = input$sdlog)
      explanation <- sprintf("P(X ≥ %.1f) = %.6f or %.4f%%", 
                           input$x_greater, prob, prob * 100)
      return(list(prob = prob, explanation = explanation, type = "greater", x = input$x_greater))
      
    } else if (input$prob_type == "between") {
      if (input$x_lower == input$x_upper) {
        # For continuous distributions, P(X = a) = 0
        prob <- 0
      } else {
        upper_prob <- plnorm(input$x_upper, meanlog = input$meanlog, sdlog = input$sdlog)
        lower_prob <- plnorm(input$x_lower, meanlog = input$meanlog, sdlog = input$sdlog)
        prob <- upper_prob - lower_prob
      }
      explanation <- sprintf("P(%.1f ≤ X ≤ %.1f) = %.6f or %.4f%%", 
                           input$x_lower, input$x_upper, prob, prob * 100)
      return(list(prob = prob, explanation = explanation, type = "between", 
                 lower = input$x_lower, upper = input$x_upper))
    }
  })
  
  # Display an explanation of the calculation
  output$explanation <- renderText({
    res <- probability()
    return(res$explanation)
  })
  
  # Generate the lognormal distribution plot
  output$distPlot <- renderPlot({
    # Get parameters
    meanlog <- input$meanlog
    sdlog <- input$sdlog
    
    # Determine a reasonable max for x-axis based on parameters
    max_x <- min(qlnorm(0.995, meanlog, sdlog), 100)
    
    # Create data frame for plotting
    x_values <- seq(0.01, max_x, length.out = 500)  # Avoid x=0
    density_values <- dlnorm(x_values, meanlog = meanlog, sdlog = sdlog)
    plot_df <- data.frame(x = x_values, density = density_values)
    
    # Create base plot
    p <- ggplot(plot_df, aes(x = x, y = density)) +
      geom_line(size = 1, color = "darkgray") +
      labs(x = "X", y = "probability density function") +
      theme_minimal() +
      theme(panel.grid.minor = element_blank()) +
      xlim(0, max_x)
    
    # Add shaded area based on selected probability type
    res <- probability()
    
    if (res$type == "less") {
      # Create data for the filled area
      fill_x <- seq(0.01, res$x, length.out = 200)
      fill_y <- dlnorm(fill_x, meanlog = meanlog, sdlog = sdlog)
      fill_df <- data.frame(x = fill_x, density = fill_y)
      
      p <- p + geom_area(data = fill_df, aes(x = x, y = density), 
                        fill = "#3F6BB6", alpha = 0.6)
      
    } else if (res$type == "greater") {
      # Create data for the filled area
      fill_x <- seq(res$x, max_x, length.out = 200)
      fill_y <- dlnorm(fill_x, meanlog = meanlog, sdlog = sdlog)
      fill_df <- data.frame(x = fill_x, density = fill_y)
      
      p <- p + geom_area(data = fill_df, aes(x = x, y = density), 
                        fill = "#3F6BB6", alpha = 0.6)
      
    } else if (res$type == "between") {
      # Create data for the filled area
      fill_x <- seq(res$lower, res$upper, length.out = 200)
      fill_y <- dlnorm(fill_x, meanlog = meanlog, sdlog = sdlog)
      fill_df <- data.frame(x = fill_x, density = fill_y)
      
      p <- p + geom_area(data = fill_df, aes(x = x, y = density), 
                        fill = "#3F6BB6", alpha = 0.6)
    }
    
    return(p)
  })
}

shinyApp(ui = ui, server = server)

Further reading

[This interactive element appears in Overview: Probability distributions. Please click this link to go to the guide.]

Version history

v1.0: initial version created 04/24 by tdhc and Michelle Arnetta as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).