Answers: Introduction to differentiation and the derivative

Author

Sara Delgado Garcia

Summary
Answers to questions relating to the guide on introduction to differentiation and the derivative.

These are the answers to Questions: Introduction to differentiation and the derivative.

Please attempt the questions before reading these answers!

1.1. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(x^3+5x-3\right)=3x^2+5.\)

1.2. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(5x\right)=5.\)

1.3. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(-5\sqrt{x}\right)=-5\cdot\frac{1}{2}x^{-1/2}=-\frac{5}{2\sqrt{x}}.\)

1.4. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(-\sin(x)\right)=-\cos(x).\)

1.5. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\cos x+5\right)=-\sin(x).\)

1.6. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(2\sqrt{x}\right)=2\cdot\frac{1}{2}x^{-1/2}=\frac{1}{\sqrt{x}}.\)

1.7. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(2\ln(2x)+x^5\right)=\frac{2}{x}+5x^4.\)

1.8. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\ln(5x)\right)=\frac{1}{5x}\cdot5=\frac{1}{x}.\)

1.9. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(e^{-x}\right)=e^{-x}\cdot(-1)=-e^{-x}.\)

1.10. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(23x+5\right)=23.\)

1.11. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(4x+100\right)=4.\)

1.12. For \(\displaystyle \sinh(5x)= \frac{e^{5x} - e^{-5x}}{2}\), it follows that \[\dfrac{\mathrm{d}}{\mathrm{d}x}\left(\sinh(5x)\right)=5 \frac{e^{5x} +e^{-5x}}{2} = 5\cosh(5x)\] since \(\displaystyle\cosh(x) = \frac{e^x +e^{-x}}{2}\).

1.13. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\cos(3x)-\sin(2x)\right)=-3\sin(3x)-2\cos(2x).\)

1.14. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\ln(x)+\cos(x)+3x\right)=\frac{1}{x}-\sin(x)+3.\)

1.15. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\frac{2}{5}\sinh(x)+\frac{2}{13}\cosh(x)\right)=\frac{2}{5}\cosh(x)+\frac{2}{13}\sinh(x).\)

1.16. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(e^{5x}+x^2+3\right)=5e^{5x}+2x.\)

1.17. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\ln(x)+x^2\right)=\frac{1}{x}+2x.\)

1.18. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\ln(5x)-\ln(x)\right)=\frac{1}{x}-\frac{1}{x}=0.\)

1.19. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\cosh(x)-5x^7\right)= \sinh(x)-35x^6.\)

1.20. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{3x^2}\right)=\sqrt{3}\)

1.21. \(\displaystyle \quad \dfrac{\mathrm{d}}{\mathrm{d}x}\left(x^3+3x-\sqrt{2x}\right)=3x^2+3-\frac{1}{\sqrt{2x}}.\)



Version history and licensing

v1.0: initial version created 05/25 by Sara Delgado Garcia as part of a University of St Andrews VIP project.

This work is licensed under CC BY-NC-SA 4.0.

Mailing List



Feedback

Your feedback is appreciated and useful. Feel free to leave a comment here,
but please be specific with any issues you encounter so we can help to resolve them
(for example, what page it occured on, what you tried, and so on).