Questions: Trigonometric identities (radians)

Dzhemma Ruseva

Summary

A selection of questions on trigonometric identities, where angles are measured in radians.

Before attempting these questions, it is recommended that you read Guide: Trigonometric identities (radians).

Q1

Using trigonometric identities, find the values of the following expressions:

- 1.1. $2(6\sin^2(\theta)) + 3(4\cos^2(\theta))$.
- 1.2. $10(7\sin^2(\theta)) + 14(5\cos^2(\theta)).$
- 1.3. $5\left(\frac{6}{\csc^2(\theta)}\right) + 15\left(\frac{2}{\sec^2(\theta)}\right)$.
- 1.4. $(\cos^2(\theta)-\sin^2(\theta))^2+4sin^2(\theta)\cos^2(\theta)$
- 1.5. $2\sin(\pi/6)\cos(\pi/12) + 2\cos(\pi/6)\sin(\pi/12)$
- 1.6. $3\cos(\pi/4)\cos(\pi/12) 3\sin(\pi/4)\sin(\pi/12)$
- 1.7. $\sin(5\pi/6) + \sin(\pi/6)$
- 1.8. $\cos(5\pi/6) + \cos(\pi/6)$

Q2

Simplify the following expressions:

- 2.1. $\tan(\theta)\cos(-\theta)$
- $2.2 \quad \tan(-\theta)\csc(-\theta)\sec(-\theta)$
- 2.3. $\tan^2(\theta) + \sin^2(\theta) + \cos^2(\theta)$
- 2.4. $\frac{2\sin(\theta)}{\cos(\theta)(1-\tan^2(\theta))}$

2.5.
$$\frac{\sin(7\theta) + \sin(3\theta)}{\cos(7\theta) - \cos(3\theta)}$$

2.6.
$$\frac{\sin(5\theta) - \sin(\theta)}{\cos(5\theta) + \cos(\theta)}$$

Q3

Using trigonometric identities, answer the following questions:

- 3.1. What is the value of $\cos(-7\pi/6)$?
- 3.2. What are the values of $\sin(3\pi/4)$ and $\sin(5\pi/4)$?
- 3.3. If $\sin(5\pi/18)$ has the value 0.766 (to 3 decimal places), what is the value of $\cos(13\pi/18)$ to three decimal places?

Q4

Using trigonometric identities find exact values of the following:

- 3.1. $\sin(\pi/12)$
- 3.2. $\cos(\pi/12)$
- 3.3. $\tan(\pi/12)$
- 3.4. $\sin(5\pi/12)$
- 3.5. $\cos(5\pi/12)$
- 3.6. $\tan(5\pi/12)$

After attempting the questions above, please click this link to find the answers.

Version history and licensing

v1.0: initial version created 08/23 by Dzhemma Ruseva as part of a University of St Andrews STEP project.

• v1.1: edited 05/24 by tdhc, and split into versions for both degrees and radians.

This work is licensed under CC BY-NC-SA 4.0.