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Summary
Explanations as to why properties of the scalar product are true.
Before reading this proof sheet, it is recommended that you read Guide: The scalar product. In addition, reading Guide: Introduction to vectors and Guide: Vector addition and scalar multiplication is essential, and reading either Guide: Trigonometry (degrees) or Guide: Trigonometry (radians) is useful.
The starting point of this proof sheet is the algebraic definition of the scalar product:
	[image: /Applications/quarto/share/formats/docx/note.png]  Reminder of algebraic definition of the scalar product

	Let  and  be two vectors. The scalar product of  and , written as , is given by



From here, the proof sheet will start with the proof of properties (1) to (5), which can be done using the algebraic definition of the scalar product. Then, the equivalence of the two definitions of scalar product is shown. Once this is done, it is safe to use the geometric definition of the scalar product in showing properties (6) and (7).
This peculiar structure is necessary to ensure that no un-proved statements are used before they are known! This guide uses column notation for vectors; this is purely for space reasons.
Proof of properties (1) – (5)
Proof of property (1)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (1)

	For all vectors  and :



Suppose that , . By the algebraic definition of scalar product  Since , , and , you can write  You can recognize this final term as  and so  as required.
Proof of property (2)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (2)

	The scalar product of any vector  with the zero vector  is 0, so:



Suppose that  and you know that . By the algebraic definition of scalar product  as required.
Proof of property (3)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (3)

	For all vectors , it follows that:



Suppose that , , and . You know from Guide: Vector addition and scalar multiplication that

So from the algebraic definition of the scalar product:  Expanding the brackets and rearranging gives  You can recognize these final two terms as  and  respectively. so  as required.
Proof of property (4)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (4)

	If  are vectors and  (pronounced ‘lambda’) is a scalar, then



Suppose that  and  are vectors and that  is a scalar. You know from Guide: Vector addition and scalar multiplication that

By the algebraic definition of scalar product  Factorizing the right hand side by a common factor of  gives  You can recognize the term in brackets as , and so  as required.
Proof of property (5)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (5)

	The scalar product of a vector  with itself is the square of its magnitude:



Using the algebraic definition for the scalar product, you can work out that for a general vector :

Proof of equivalence of algebraic and geometric definitions
The main goal in this proof is to show that  as defined above is also equal to .
In order to prove the equivalence of these definitions, you will need properties (1), (3) and (5) from Guide: The scalar product.
Place the starts of the two vectors  and  at the same point. Call this base point . Notice that the angle of  and  at the point  is the smallest angle between them; call this angle .
Consider the plane formed by the end of  (at point ) and formed at the tip of  (at point ). The points  form a plane. Now, let  be the length of ,  be the length of  and  be the length of .
The points  therefore form a triangle with side lengths . Draw a perpendicular line from  to the line ; this perpendicular line has length , and splits the line  into lengths , where the line of length  is from the point  to the intersection of the perpendicular.
All of this information is shown in Figure 1.
	[image: ./FiguresPNG/vectortriangle-fig1.png]
Figure 1: Geometric interpretation of the scalar oroduct, showing the vectors , , and their difference and a triangle with the corresponding lengths.


Using trigonometry, the height of the triangle in Figure 1 is . Looking at the diagram again,  and

Using Pythagoras’s theorem,

and so

(the length of . Expanding out the brackets on the left hand side obtains

Using property (5) from above:

Using property (1), property (3) and property (5),

Remember from above that  and , then

Cancelling the terms  and  gives

and so  as required.
Proof of properties (6) and (7)
Proof of property (6)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (6)

	If two vectors  and  are parallel (so  is a scalar multiple of  by a positive scalar; see Guide: Vector addition and scalar multiplication), then

Similarly, if  and  are anti-parallel (so  is a scalar multiple of  by a negative scalar; see Guide: Vector addition and scalar multiplication), then



Suppose that  and  are parallel; so they point in the same direction. This means that the smallest angle between  and  is . Therefore, as  (see Guide: Trigonometry (degrees) or Guide: Trigonometry (radians)), it follows from the geometric definition of the scalar product that

Now suppose that  and  are anti-parallel; so they point in completely opposite directions. This means that the smallest angle between  and  is  degrees or  radians. Since the cosine of this value is  (see Guide: Trigonometry (degrees) or Guide: Trigonometry (radians)), it follows from the geometric definition of the scalar product that

Proof of property (7)
	[image: /Applications/quarto/share/formats/docx/note.png]  Property (6)

	If two non-zero vectors  and  are perpendicular, then their scalar product  is equal to . On the other hand, if the scalar product of two non-zero vectors  and  is equal to , then  and  are perpendicular.


Suppose that  and  are perpendicular; so the smallest angle between them is  degrees or  radians. The cosine of a right angle is  (see Guide: Trigonometry (degrees) or Guide: Trigonometry (radians)). So using the geometric definition of the scalar product gives

Now suppose that . It then follows from the geometric definition of the scalar product that

Since both  and  are non-zero, neither of their magnitudes are . So , where  is the smallest angle between  and . Since , the only value of  in this range such that  is  radians (so ). Therefore,  and  are perpendicular.
Further reading
Click this link to go back to Guide: The scalar product.
For questions on this topic, please go to Questions: The scalar product.
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