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Summary
The proof sheet demonstrates that the common rules of differentiation - the sum, difference, product, quotient, and chain rules - are true.
Before reading this proof sheet, it is essential that you read Guide: Introduction to differentiation and the derivative. In addition, reading [Guide: Introduction to limits] is useful. Further reading will be illustrated where required.
The starting point of this proof sheet is the limit definition of the derivative of a function:
	[image: /Applications/quarto/share/formats/docx/note.png]  Reminder of limit definition of the derivative

	The derivative of  with respect to  is defined to be the function



Sum and difference rules
	[image: /Applications/quarto/share/formats/docx/note.png]  The sum and difference rules

	(sum rule) The derivative of two functions  and  added together is the same as their derivatives  and  added together; that is,  or

(difference rule) The derivative of one function  subtracted from another  is the same as the derivative  subtracted from the derivative of ; that is  or



Proof of the sum rule
The strategy here is direct; put the function  into the definition and pull the fraction apart to reveal the definitions of derivatives of  and .
Let’s start with  and  as two differentiable real-valued functions, with sum . Putting this into the limit definition of the derivative given above:

Since , this becomes

You can now split this into two fractions, one of which sets up the definition of , and the other sets up the definition of . So here

Now, use properties of limits (see [Guide: Introduction to limits]) to split the limits gives

and so, by the limit definition of the derivative

as required.
Proof of the difference rule
Let’s start with  and  as two differentiable real-valued functions, with difference . Putting this into the limit definition of the derivative given above:

Using the fact that , and taking care of the signs in expansion, gives

You can now split this into two fractions, one of which sets up the definition of , and the other sets up the definition of . So here

Now, use properties of limits (see [Guide: Introduction to limits]) to split the limits gives

and so, by the limit definition of the derivative

as required.
Scaling rule
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	The derivative of a function  multiplied by a real number  is the same as the derivative  multiplied by ; that is  or



Proof of the scaling rule
This is similar to that of the sum and difference rules. Let’s start with  as a differentiable real-valued function, with scaling . Putting this into the limit definition of the derivative given above:

Using the fact that  and factorizing out the  gives

Since the constant  does not depend on the variable in the limit , you can use properties of limits (see [Guide: Introduction to limits]) to take the constant  out of the limit. This gives

and so, by the limit definition of the derivative

as required.
Product rule
See Guide: The product rule for more about the product rule.
Here is the product rule, restated with  and  for visual ease in the proof that follows.
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	Let  and  be two differentiable functions. Then the product rule says that

that is, the derivative of the product of  and  is equal to the product of  and the derivative of , plus the product of  and the derivative of .
This can also be written as



Proof of the product rule
Here’s why the product rule works. It requires a little more thought than the proof of the sum rule and the scaling rule; you have to manufacture the definition of the derivative in one place by using a creative addition by .
So, let’s start with  and  as two differentiable real-valued functions, with product . Putting this into the limit definition of the derivative given above:

Since , this becomes

Now, there’s no way of pulling this apart. You have to force the issue slightly by creatively adding . The way to do this is to add  into the numerator, and factorize in slightly different ways. This is fine to do, as . Doing this, and factorizing to manufacture the definitions of  and  gives:

Using properties of limits, and the fact that  is constant as  varies to take it outside the limit gives

Now, as  tends to , it follows that  tends to . The other two limits are the definitions of  and  respectively. Therefore, you can write that

which is the product rule.
Quotient rule
See Guide: The quotient rule for more about the quotient rule.
Here is the quotient rule, restated with  and  for visual ease in the proof that follows.
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	Let  and  be two differentiable functions. Then the quotient rule says that

that is, the derivative of  divided by  is equal to the difference of  and , divided by the square of the function .
This can also be written as



Proof of the quotient rule
Here’s why the quotient rule works. Again, there is a step beyond algebraic manipulation where you have to manufacture the definition of the derivative in one place by using a creative addition by .
So, let’s start with  and  as two differentiable real-valued functions (with  not the zero function), with quotient . Putting this into the limit definition of the derivative gives

You can try your best to reduce this down by cross-multiplying to get a common denominator of the numerator of the limit. Then, you can drop that denominator down to get a single fraction. Doing this:

Now, the hope is to pull this apart into two separate limits. Since you have no way of cancelling the , you could try and manufacture the definitions of the derivatives of  and . You have to force the issue slightly by creatively adding ; in this case, by adding  to the numerator. In addition, you can use properties of limits to get rid of the  in the denominator. Doing these steps and simplifying gives:

Now, factorizing this expression, using the properties of limits) and moving  and  (notice that this needs to be done to ensure the correct definition of the derivative) out of the limits where appropriate gives

Now, as  tends to , it follows that  tends to , implying that the final limit tends to . The other two limits are precisely the definitions of  and . Therefore, you can write that

which is the quotient rule.
Chain rule
See Guide: The chain rule for more about the chain rule.
Here is the chain rule, restated with  and  for visual ease in the proof that follows.
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	Let  and  be two differentiable functions. Then the chain rule says that

that is, the derivative of  composed with  with respect to  is equal to the product of the derivative of  with respect to  and the derivative of  with respect to .
This can also be written as



Proof of the chain rule
Here’s why the chain rule can be used. The idea is to take the limit definition of  and split the limit into the product of the two derivatives  and . It requires more thought than the proofs of the product and chain rule, primarily due to the reliance on definitions of differentiation and the fact that it isn’t a creative addition of  that splits the derivative, but a creative multiplication by  instead.
Alternative definition of derivative
Proving the chain rule requires the restatement of the limit definition of a derivative at a point . Here are the two definitions side by side.
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	The derivative of  with respect to  at the point  is defined to be
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	The derivative of  with respect to  at the point  is defined to be



(See [Guide: Introduction to differentiability] for more.) To see that these are equal, start with definition (1). Here,  is the variable as the limit depends on . Now, rescale the limit by setting  (see [Guide: Properties of limits] for more). This gives

As , it follows that ; in addition, . So the limit becomes

so the definitions are the same at a point. Since a function  is differentiable on an interval  of real numbers if and only if  exists for all  in , it follows that you can use this definition for a differentiable function.
Intuition
The idea is to start with the second limit definition of the derivative above and put the function  into the definition to get:

Now, you would want to generate the derivative of  with respect to  at  and the derivative of  with respect to  at . To do this, you can notice that the  is already there for the derivative of . You can multiply top and bottom of the fraction by . Since , this does not change the value of the limit. This gives

You can now pull this limit apart to attempt to make the two definitions of  and . Using the properties of limits to do this gives

The second of these terms is , which is what you want. The first of these terms would be the definition of … if the limit was  rather than . Here is the problem, because you cannot guarantee the behaviour of  as  gets closer to ; it could be that , which is a big problem. In fact, it could be that as  gets closer to , then  could be  in infinitely many different places. This needs to be rectified.
Overcoming the technicality
The idea is to ‘fill in’ the places where , by defining the value of the function  at these points. You can define the function

You can notice here that  is already defined as  is a differentiable function, meaning that  exists for all .
Now, consider the expression

The idea is to prove that

for all . This way, you can evaluate the limit of the right hand side instead of the left hand side. However, this does depend on whether or not .
· If , then . You can use the first part of the definition to say that

· Since , you can cancel these to get

· If  then  and also . This implies that

So they really are equal. Using this expression, together with the properties of limits gives

The idea is then to prove that these two limits exist; as then  would exist. The second of these limits is precisely the definition of , so let’s focus on the limit of  as  tends to . If this function  is continuous at  (see [Guide: Introduction to continuity]) then this limit exists and is equal to . The function  is defined whenever  is. Since  is differentiable, then it is continuous at every point, including ; therefore,  is continuous at . Since  is differentiable at , then  is continuous at . Therefore, by properties of continuous functions (see [Guide: Introduction to continuity]),  is continuous at . It follows that

by definition and so

and this is the chain rule!
Further reading
Click this link to go back to Guide: Introduction to differentiation and the derivative.
Click this link to go back to Guide: The product rule.
Click this link to go back to Guide: The quotient rule.
Click this link to go back to Guide: The chain rule
For questions on differentiation and the derivative, please go to Questions: Introduction to differentation and the derivative.
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