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Summary

This proof sheet demonstrates that the law of total probability and Bayes’ theorem are true.

Before reading this proof sheet, it is recommended that you read Guide: Conditional probability
and Guide: Law of total probability and Bayes’ theorem.

Proof of the law of total probability

First of all, here is a restatement of the law of total probability from Guide: Law of total
probability and Bayes’ theorem:

Definition of the law of total probability

Suppose an event 𝐵 depends on several possible scenarios. These scenarios can be
described by events 𝐴1, 𝐴2, … , 𝐴𝑛, that are:

• Mutually exclusive: they cannot occur at the same time, and
• Exhaustive: one of them must always occur.

Then, the law of total probability states that the probability of event 𝐵 is:

ℙ(𝐵) =
𝑛

∑
𝑖=1

ℙ(𝐴𝑖)ℙ(𝐵 ∣ 𝐴𝑖)

The proof of the law of total probability comes directly from the definition of conditional
probability given in Guide: Conditional probability:

ℙ(𝐵 ∣ 𝐴𝑖) = ℙ(𝐵 ∩ 𝐴𝑖)
ℙ(𝐴𝑖)

Multiplying by ℙ(𝐴𝑖) gives the multiplication rule (again from Guide: Conditional probability)
:

1

../studyguides/conditionalprobability.qmd
../studyguides/bayestheorem.qmd
../studyguides/bayestheorem.qmd
../studyguides/bayestheorem.qmd
../studyguides/conditionalprobability.qmd
../studyguides/conditionalprobability.qmd


ℙ(𝐵 ∩ 𝐴𝑖) = ℙ(𝐵 ∣ 𝐴𝑖)ℙ(𝐴𝑖)

As scenarios 𝐴1, 𝐴2, … , 𝐴𝑛 are mutually exclusive (so 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛)
and exhaustive (⋃1≤𝑖≤𝑛 𝐴𝑖 = 𝐵), it follows from results in set theory (see [Guide: Operations
on sets]) that:

ℙ(𝐵) = ℙ(𝐵 ∩ 𝐴1) + ℙ(𝐵 ∩ 𝐴2) + ⋯ + ℙ(𝐵 ∩ 𝐴𝑛) =
𝑛

∑
𝑖=1

ℙ(𝐵 ∩ 𝐴𝑖)

Substituting the above expressions gives:

ℙ(𝐵) = ℙ(𝐵 ∣ 𝐴1)ℙ(𝐴1)+ℙ(𝐵 ∣ 𝐴2)ℙ(𝐴2)+⋯+ℙ(𝐵 ∣ 𝐴𝑛)ℙ(𝐴𝑛) =
𝑛

∑
𝑖=1

ℙ(𝐵 ∣ 𝐴𝑖)ℙ(𝐴𝑖)

Which results in the law of total probability:

ℙ(𝐵) =
𝑛

∑
𝑖=1

ℙ(𝐴𝑖)ℙ(𝐵 ∣ 𝐴𝑖)

Proof of Bayes’ theorem

Here is the statement of Bayes’ theorem from Guide: Law of total probability and Bayes’
theorem:

Statement of Bayes’ Theorem

If 𝐴 and 𝐵 are events with ℙ(𝐵) > 0, then Bayes’ Theorem states:

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐵 ∣ 𝐴)ℙ(𝐴)
ℙ(𝐵) .

where:

• ℙ(𝐴 ∣ 𝐵) is the probability of 𝐴 given 𝐵,
• ℙ(𝐵 ∣ 𝐴) is the probability of 𝐵 given 𝐴,
• ℙ(𝐴) and ℙ(𝐵) are the individual probabilities of 𝐴 and 𝐵, respectively.

Bayes’ Theorem is derived directly from the definition of conditional probability: see Guide:
Conditional probability. Start with the conditional probabilities of two events 𝐴 and 𝐵:
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(1) ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵) and (2) ℙ(𝐵 ∣ 𝐴) = ℙ(𝐴 ∩ 𝐵)

ℙ(𝐴)

You can rearrange (2) by multiplying both sides by ℙ(𝐴), giving the multiplication rule:

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐵 ∣ 𝐴)ℙ(𝐴)

Substitute this result into equation (1) to get:

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐵 ∣ 𝐴)ℙ(𝐴)
ℙ(𝐵)

This gives Bayes’ Theorem, a way to reverse conditional probabilities when direct calculation
is difficult.

Further reading

Click this link to go back to Guide: Law of total probability and Bayes’ theorem.

Version history

v1.0: initial version created 04/25 by Sophie Chowgule as part of a University of St Andrews
VIP project.
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