Answers: Completing the square

Tom Coleman

Summary

Answers to questions relating to the guide on completing the square. These are the answers to Questions: Completing the square.

Please attempt the questions before reading these answers!

Q1

1.1. Here, $x^2 - 2x + 15 = (x - 1)^2 + 14$, so in this question p = -1 and q = 14. 1.2. Here, $y^2 - 6y + 8 = (y - 3)^2 - 1$, so in this question p = -3 and q = -1. 1.3. Here, $x^2 + 8x + 20 = (x + 4)^2 + 4$, so in this question p = 4 and q = 4. 1.4. Here, $m^2 - 26m + 25 = (m - 13)^2 - 144$, so in this question p = -13 and q = -144. 1.5. Here, $n^2 + 6n + 50 = (m + 3)^2 + 41$, so in this question p = 3 and q = 41. 1.6. Here, $x^2 + 2x + 144 = (x + 1)^2 + 143$, so in this question p = 1 and q = 143. 1.7. Here, $h^2 - 3h - 3 = \left(h - \frac{3}{2}\right)^2 + \frac{3}{4}$, so in this question p = -3/2 and q = 3/4. 1.8. Here, $x^2 + x - 3 = \left(x + \frac{1}{2}\right)^2 - \frac{13}{4}$, so in this question p = 1/2 and q = -13/4. 1.9. Here, $x^2 - 13x + 43 = \left(x - \frac{13}{2}\right)^2 + \frac{3}{4}$, so in this question p = -13/2 and q = 3/4. 1.10. Here, $y^2 - 8y + 16 = (y - 4)^2$, so in this question p = -4 and q = 0. 1.11. Here, $x^2 + 13x + 9 = \left(x + \frac{13}{2}\right)^2 - \frac{133}{4}$, so in this question p = 13/2 and q = -133/4. 1.12. Here, $m^2 + 3m + 33 = \left(m + \frac{3}{2}\right)^2 - \frac{143}{4}$, so in this question p = 3/2 and q = -143/4.

Q2

2.1. Here, $2x^2 - 12x + 14 = 2(x-3)^2 - 4$, so in this question a = 2, p = -3 and q = -4. 2.2. Here, $5y^2 - 10y + 4 = 5(x-1)^2 - 1$, so in this question a = 5, p = -1 and q = -1. 2.3. Here, $4x^2 + 32x + 68 = 4(x+4)^2 + 4$, so in this question a = p = q = 4. (Or, if you prefer, $(2x+8)^2 + 4$.) 2.4. Here, $2m^2 + 2m + 2 = 2\left(m + \frac{1}{2}\right)^2 + \frac{3}{2}$, so in this question a = 2, p = 1/2 and q = 3/2. 2.5. Here, $3x^2 - 2x + 5 = 3\left(x - \frac{1}{3}\right)^2 + \frac{14}{3}$, so in this question a = 3, p = -1/3 and q = 14/3. 2.6. Here, $4x^2 - 4x + 1 = 4\left(x - \frac{1}{2}\right)^2$, so in this question a = 4, p = -1/2 and q = 0. (Or, if you prefer, $(2x - 1)^2$.) 2.7. Here, $2h^2 - 3h + 1 = 2\left(h - \frac{3}{4}\right)^2 - \frac{1}{8}$, so in this question a = 2, p = -3/4 and q = -1/8. 2.8. Here, $3x^2 + 5x + 2 = 3\left(x + \frac{5}{6}\right)^2 - \frac{3}{36}$, so in this question a = 3, p = 5/6 and q = -3/36.

Q3

Using your working from Q1 and Q2, solve the following quadratic equations.

3.1. You worked out in 1.2 that $y^2 - 6y + 8 = (y-3)^2 - 1$. Rearranging $(y-3)^2 - 1 = 0$ for y gives $y = 3 \pm 1$, so y = 2 or y = 4.

3.2. You worked out in 1.4 that $m^2 - 26m + 25 = (m - 13)^2 - 144$. Rearranging $(y - 3)^2 - 144 = 0$ for y gives $y = 13 \pm 12$, so y = 1 or y = 25.

3.3. You worked out in 1.3 that $x^2+8x+20 = (x+4)^2+4$. Using the fact that $(\pm 2i)^2 = -4$ (see [Guide: Introduction to complex numbers]), rearranging $(x+4)^2+4=0$ for y gives $y = -4 \pm 2i$, so y = -4 - 2i or y = -4 + 2i.

3.4. You worked out in 2.6 that $4x^2 - 4x + 1 = 4\left(x - \frac{1}{2}\right)^2$. Rearranging $4\left(x - \frac{1}{2}\right)^2 = 0$ for x gives $x = \frac{1}{2}$ (twice, see Guide: Introduction to quadratic equations).

3.5. You worked out in 2.3 that $4x^2 + 32x + 68 = 4(x+4)^2 + 4$. Using the fact that $(\pm i)^2 = -1$ (see [Guide: Introduction to complex numbers]), rearranging $4(x+4)^2 + 4 = 0$ for x gives $x = -4 \pm i$, so x = -4 - i or x = -4 + i.

3.6. You worked out in 2.8 that $3x^2 + 5x + 2 = 3\left(x + \frac{5}{6}\right)^2 - \frac{3}{36}$. Rearranging $3\left(x + \frac{5}{6}\right)^2 - \frac{3}{36} = 0$ for x gives $y = -\frac{5}{6} \pm \frac{1}{6}$, so y = -1 or y = -2/3.

Version history and licensing

v1.0: initial version created 09/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.