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Summary

Answers to questions relating to the guide on the law of total probability and Bayes’ theorem.

These are the answers to Questions: Law of total probability and Bayes’ theorem.

Please attempt the questions before reading these answers.

Q1

1.1.

You know:

• ℙ(Ward A) = 0.4

• ℙ(Recover ∣ Ward A) = 0.8

• ℙ(Ward B) = 0.6

• ℙ(Recover ∣ Ward B) = 0.6

Using the law of total probability:

ℙ(Recover) = ( 4
10) ( 8

10) + ( 6
10) ( 6

10) = 0.32 + 0.36 = 0.68

So the probability that a randomly chosen patient recovers is 0.68.

1.2.

You know:

• ℙ(Veg) = 0.5, ℙ(Finish ∣ Veg) = 0.9
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• ℙ(Chicken) = 0.3, ℙ(Finish ∣ Chicken) = 0.7
• ℙ(Fish) = 0.2, ℙ(Finish ∣ Fish) = 0.8

Using the law of total probability:

ℙ(Finish) = (0.5)(0.9) + (0.3)(0.7) + (0.2)(0.8) = 0.45 + 0.21 + 0.16 = 0.82

So the probability that a randomly chosen student finishes their lunch is 0.82.

1.3.

You know:

• ℙ(𝐹1) = 0.2, ℙ(Defective ∣ 𝐹1) = 0.05

• ℙ(𝐹2) = 0.3, ℙ(Defective ∣ 𝐹2) = 0.02

• ℙ(𝐹3) = 0.5, ℙ(Defective ∣ 𝐹3) = 0.01

Using the law of total probability:

ℙ(Defective) = (0.2)(0.05) + (0.3)(0.02) + (0.5)(0.01) = 0.01 + 0.006 + 0.005 = 0.021

So the probability that a randomly selected product is defective is 0.021.

1.4.

You know:

• ℙ(Home) = 0.5, ℙ(Complete ∣ Home) = 0.7

• ℙ(Library) = 0.3, ℙ(Complete ∣ Library) = 0.9

• ℙ(Café) = 0.2, ℙ(Complete ∣ Café) = 0.6

Using the law of total probability:

ℙ(Complete) = (0.5)(0.7) + (0.3)(0.9) + (0.2)(0.6) = 0.35 + 0.27 + 0.12 = 0.74
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So the probability that the student completes their homework is 0.74.

Q2

2.1.

You know:

• ℙ(𝐷) = 0.02

• ℙ(Pos ∣ 𝐷) = 0.95

• ℙ(Pos ∣ ¬𝐷) = 0.1 (where ¬𝐷 means the person does not have the disease)
• ℙ(¬𝐷) = 0.98

Using the law of total probability:

ℙ(Pos) = (0.02)(0.95) + (0.98)(0.1) = 0.019 + 0.098 = 0.117

Now applying Bayes’ theorem:

ℙ(𝐷 ∣ Pos) = (0.95)(0.02)
0.117 ≈ 0.162

So the probability that the person has the disease, given that they test positive, is approximately
0.162. Not a very good test!

2.2.

You know:

• ℙ(Rain) = 0.4

• ℙ(Dry) = 0.6

• ℙ(𝐹 ∣ Rain) = 0.8

• ℙ(𝐹 ∣ Dry) = 0.1

Using the law of total probability:

3



ℙ(𝐹) = (0.4)(0.8) + (0.6)(0.1) = 0.32 + 0.06 = 0.38

Then applying Bayes’ theorem gives:

ℙ(Rain ∣ 𝐹 ) = (0.8)(0.4)
0.38 ≈ 0.842

So the probability that it actually rains in St Andrews, given that the forecast predicts rain, is
approximately 0.842.

2.3.

You know:

• ℙ(𝐴) = 0.7

• ℙ(𝐵) = 0.3

• ℙ(𝐹 ∣ 𝐴) = 0.02

• ℙ(𝐹 ∣ 𝐵) = 0.05

Using the law of total probability:

ℙ(𝐹) = (0.7)(0.02) + (0.3)(0.05) = 0.014 + 0.015 = 0.029

Then applying Bayes’ theorem gives:

ℙ(𝐵 ∣ 𝐹) = (0.05)(0.3)
0.029 ≈ 0.517

So the probability that the broken biscuit came from Machine B, given that it is broken, is
approximately 0.517.

2.4.

You know:

• ℙ(Red) = 0.4
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• ℙ(Blue) = 0.6

• ℙ(𝑊 ∣ Red) = 0.3

• ℙ(𝑊 ∣ Blue) = 0.7

Using the law of total probability:

ℙ(𝑊) = (0.4)(0.3) + (0.6)(0.7) = 0.12 + 0.42 = 0.54

Then applying Bayes’ theorem gives:

ℙ(Red ∣ 𝑊) = (0.3)(0.4)
0.54 ≈ 0.222

So the probability that the sweet is red, given that it has a wrapper, is approximately 0.222.
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